Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lean but sated: Molecular Switch for a Healthy Metabolism discovered

29.06.2015

The protein complex mTORC1 is a central regulator of cell metabolism. In the active state, it stimulates anabolic processes and increases the production and storage of proteins and lipids.

Researchers from the German Leibniz Institute for Age Research in Jena and the Dutch Ageing Institute ERIBA in Groningen discovered a mechanism how mTORC1 regulates metabolism: It controls the expression of a specific variant of the transcriptional regulator C/EBPβ.


mTORC1 controls the expression of different variants of the gene regulator C/EBPβ. Suppression of the short variant in mice leads to a healthy metabolism, leanness and improved insulin sensitivity.

[Source: Lazare / www.pixabay.com]

Elimination of this variant in mice results in a healthy metabolism, leanness and improved insulin sensitivity. The study may provide a basis for novel strategies for the treatment of metabolic diseases such as obesity and type II diabetes.

The mTORC1 (mammalian target of rapamycin complex 1) is a central regulator of cell metabolism and its activity is regulated by nutrient availability and growth signals. If activated, it stimulates anabolic metabolism and enhanced production of proteins and lipids.

The resulting increase in biomass is a prerequisite for tissue growth. Hyper-activation of mTORC1 by overfeeding may result in obesity and is believed to promote metabolic disorders such as type II diabetes. In contrast, a calorie restricted diet decreases mTORC1 activity. This improves metabolic health and increases life span in many species up to mammals.

Many researchers have focused on mTORC1 function during the past years because of its crucial role in metabolism. However, little is known about factors that are specifically controlled by mTORC1 and that are responsible for the regulation of genes that are important for metabolic adjustments.

Now, researchers from Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) in Jena, Germany, and European Research Institute for the Biology of Ageing (ERIBA) in Groningen, Netherlands, found a mechanism through which mTORC1 regulates metabolic processes. The research results were published in renowned journal EMBO Reports.

Switching on and off metabolic gene transcription.

“Researchers already know a lot about how mTORC1 is activated by nutrient supply. But little is known about the downstream factors that regulate metabolic genes and thereby determine the metabolic state of an organism”, Prof. Dr. Cornelis Calkhoven (ERIBA), former group leader at FLI, explains.

A main function of mTORC1 is the stimulation of mRNA translation, which is the crucial and final process in gene expression that results in production of the biologically active proteins. “We now found a factor – C/EBPβ – which is controlled by mTORC1”, Calkhoven continues. C/EBPβ is a gene regulator that controls various metabolic genes. Within cells, there exist two kinds of C/EBPβ: the long variant is a gene activator, whereas the short variant suppresses genes.

“Our data show that mTORC1 specifically promotes the formation of the short variant of C/EBPβ”, Dr. Christine Müller (ERIBA), former researcher at FLI, states. The researchers used a mouse model in which a mutation in the C/EBPβ gene prevents the production of the short C/EBPβ variant even if mTORC1 is activated. “Intriguingly, our data show that mice with this mutation display an improved metabolic phenotype, including reduced fat metabolism and fat accumulation, and improved insulin sensitivity and glucose tolerance”, Dr. Laura Zidek, Postdoc at FLI, emphasizes the findings.

Healthy metabolism

“The healthy metabolic phenotype we observed in our mouse model is similar to what is found under calorie restriction”, Calkhoven explains. Interestingly, these positive effects can be achieved without reduction in food intake: the mice are lean but sated.

“Our study shows that the mechanism regulating the formation of C/EBPβ variants is an important molecular switch in the metabolic pathway controlled by mTORC1. Thus, pharmacological targeting of C/EBPβ isoform expression may provide a promising strategy for the treatment of metabolic diseases such as obesity and type II diabetes thereby extending health span.

Publication
Zidek LM, Ackermann T, Hartleben G, Eichwald S, Kortman G, Kiehntopf M, Leutz A, Sonenberg N, Wang ZQ, von Maltzahn J, Müller C, Calkhoven CF. Deficiency in mTORC1-controlled 1 C/EBPβ -mRNA translation improves metabolic health in mice. EMBO Rep. 2015. pii: e201439837. DOI 10.15252/embr.201439837.

Contact
Dr. Evelyn Kästner
Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI)
Beutenbergstr. 11, 07745 Jena, Germany
Phone: +49 (0)3641-656373, Fax: +49 (0)3641-656351, E-Mail: presse@fli-leibniz.de


Background information

The Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.fli-leibniz.de.

Dutch European Research Institute for the Biology of Ageing (ERIBA) was founded by the University Medical Center Groningen (UMCG) in 2013. ERIBA is an internationally orientated research institute focusing on fundamental biological problems related to aging and age-associated diseases. See http://www.umcg.nl/EN/Research/ERIBA for more information.

The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See http://www.leibniz-association.eu for more information.

Weitere Informationen:

http://www.fli-leibniz.de - Website Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI) Jena

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>