Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of project ECO COM'BAT: Sustainable energy storage with high-voltage batteries

07.03.2017

Cruising range is one of the greatest challenges for the rapid implementation of electromobility in Europe. Ten partners from industry and research organizations now join forces in the EU funded project ECO COM'BAT, coordinated by the Fraunhofer Project Group Materials Recycling and Resource Strategies, part of the Fraunhofer Institute for Silicate Research ISC, to develop the next generation of lithium-ion batteries – the high-voltage battery. Better performance is not the only goal for the new battery. Compared to conventional batteries the new type should be more powerful and even more sustainable due to the substitution of conventional, often expensive, rare or even critical materials.

Lithium-ion batteries are the preferred source of energy for electric vehicles and consumer devices owing to their high energy density and reliability. But expectations rise with green car sales and consumer devices grow more and more complex. Consumers ask a lot from a new battery: better safety, longer life spans, higher energy density, better performance and wider range.


Efficient lithium-ion pouch cell with the base materials.

© K. Selsam-Geißler, Fraunhofer ISC

The scientists teaming up in the project ECO COM'BAT („Ecological Composites for High-Efficient Li-Ion Batteries“) set out to develop a novel type of high-voltage battery. Their goal is to extend the range of electric vehicles, to shorten charging times, to reduce battery weight, to enhance stability and durability, and above all, to substitute critical or precious raw materials commonly used in conventional lithium-ion batteries.

Upscaling to production scale

In order to achieve all this at the same time, the project partners use innovative materials: low-cobalt NMC – short for lithium nickel manganese cobalt oxide – serves as active electrode material. It provides the required energy density but contains approx. 20 percent less cobalt than conventional solutions. Carbon nanotubes and porous carbon serve as conductive additives.

They enhance the electrical conductivity of the electrodes and allow high energy densities. A special high-voltage electrolyte based on the conductive salt lithium-bis(fluorosulfonyl)imide (LiFSI) serves as electrolyte which can be operated stably even at high voltages. An ion-conductive hybrid polymer coating protects the electrolyte materials and ensures safe and reliable use of the battery and a long lifespan.

The first task for the ECO COM'BAT team will be the upscaling of the processes required for the large-scale production of the new battery materials. The next step will then be the upscaling of the actual cell production to close-to-industry pilot scale and then to production scale. The challenge is to meet automotive standard requirements with energy and cost efficient production methods.

Efficient gentle recycling

A more widespread use of electric vehicles will invariably mean more waste batteries. To prevent problematic waste and also to recover precious materials like graphite, cobalt and lithium, new strategies must be developed to ensure efficient recycling. This begins with a design for recycling that allows to recover the contained materials to the best possible extent. To this effect, the researchers will also test innovative recycling processes.

Project partners and funding

The ECO COM'BAT project is supported by the EIT RawMaterials consortium of the European Institute for Innovation and Technology EIT. EIT RawMaterials, funded by the European Commission, is the world's largest and strongest consortium in the raw materials sector. Its vision is a European Union, where raw materials are a major strength. The task of the consortium is to strengthen the competitiveness, growth and attractiveness of the European raw material sector through radical innovation and entrepreneurship.

The innovative materials of the high-voltage battery will be provided by the industry partners Arkema, from France, and Umicore, from Belgium. The Fraunhofer ISC will be in charge of the required protective coating. Arkema and the Fraunhofer ISC will work together on upscaling of materials to pilot scale. The electrodes and cells will be manufacured by the French Alternative Energies and Atomic Energy Commission (CEA), the German manufacturer Custom Cells Itzehoe and by the Fraunhofer R&D Center Electromobility Bavaria, part of the Fraunhofer ISC, according to specifications provided by the French battery maker SAFT. The analysis and characterization of materials, components and cells will be performed by the Technical University Darmstadt, the Spanish research organization CSIC, the Italian research organization ENEA, as well as the Fraunhofer ISC and its Project Group IWKS. All simulation processes will be done at the Flemish Institute for Technological Research VITO. The Fraunhofer Project Group IWKS will manage all tests on new recycling strategies.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.iwks.fraunhofer.de
http://www.eitrawmaterials.eu

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>