Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser instead of Reading Glasses?

09.02.2016

Up to now, presbyopia is usually treated by wearing reading glasses. Different methods have also been tested to correct this form of defective vision with the laser. Now, the Laser Zentrum Hannover e.V. (LZH) is developing a virtual model together with two project partners, in which an especially gentle, laser-based surgical method can be simulated. In the so called fs-lentotomy method, the crystalline lens is made flexible again by performing micro-cuts with a femtosecond laser. The aim of the RayFEye project is to make the results of the eye surgery predictable.

The Image-Guided Laser Surgery Group of the Biomedical Optics Department is now developing an experimental setup in which the influence of the micro-cuts on the crystalline lens can be measured.


Applying micro-cuts in the lens in a stretcher.

Photo: LZH

The special feature of this complex setup is that it can stretch and unstretch a sample crystalline lens, an animal byproduct. Thus, different focus distances of the eye can be simulated. The scientists can measure the changes in the beam path (ray tracing) through the lens both before and after the micro-cuts in the eye have been made.

Prior simulation of the surgery

With the results of these experiments, cutting patterns for the surgical correction of presbyopia can be determined and optimized. The cutting patterns and the measurement results of the experiments will then be entered into a software. This software creates a virtual lens model on which the surgical correction can be simulated prior to the surgery.

The goal of the project is to develop a surgical method in which presbyopia can be corrected in a gentle manner. Additionally, the software should be further developed to customize it for clinical use. It should be able to simulate surgeries a priori in order to improve the results of eye corrections.

Apart from the LZH, the Optimo Medical AG (formerly Integrated Scientific Services AG), which develops the OptimEyesTM software, and the ROWIAK GmbH as manufacturer of the complete laser system are involved in the project.

The project „Ray tracing in ophthalmic finite element models for predicting of visual acuity enhancement“ (RayFEye) is supported by the German Federal Ministry of Education and Research (BMBF) and the Swiss State Secretariat for Education, Research and Innovation (SBFI) within the framework of the Eurostars program.

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>