Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest carnivorous sundew of the Americas discovered on Facebook

24.07.2015

An international team of botanists from Brazil, USA and the Botanische Staatssammlung München, Germany described a new species of carnivorous sundew (Drosera, Droseraceae), which was discovered on a not-so-remote mountain in Southeastern Brazil. The new species, which has been named Drosera magnifica (the magnificent sundew), turned out to be the largest of its kind known from the Americas, attaining a total length of 1.5m.

The spectacular thread-like carnivorous foliage is up to 24 cm long forming medusa-like clusters of sticky, glistening leaves.


The giant new species Drosera magnifica in its habitat. Photo: Paulo Gonella

Although discoveries of new species are not unusual, even nowadays, the way in which this new giant sundew species was discovered is exceptional: it is the first time that a new plant species has been discovered from a photograph which was posted on the social network Facebook.

A local orchid and native flora enthusiast posted the pictures in 2013, taken while exploring mountains near his hometown in Minas Gerais state. The pictures were picked up and immediately identified as a new sundew species by carnivorous plant experts Fernando Rivadavia and Paulo Gonella.

The new species has now been published in the renowned taxonomical journal Phytotaxa, including a detailed scientific description of the plant and a brief history of its unusual discovery.

“The genus Drosera, also known as sundews, is the largest group of carnivorous plants, and comprises approximately 250 species, most of them found in the Southern Hemisphere, especially in Australia, South Africa and Brazil”, says Dr. Andreas Fleischmann from the SNSB, Botanische Staatssammlung München, senior author of the publication.

Sundews produce leaves that are covered with carnivorous glands, so-called tentacles, which produce sticky droplets of a viscous fluid. These glistening red tentacles constitute visually attractive yet deadly traps for small arthropods, especially small flying insects. Indeed, “even under the humid, foggy and rainy conditions on the mountain summit where it grows, the long thread-like leaves of Drosera magnifica surprisingly were covered with lots of small insects”, says sundew expert Fernando Rivadavia, who studied the plants in nature in 2013, soon after its discovery on Facebook.

In most Drosera species, the tentacles and even the leaves are capable of movement, and will bend over the caught prey, entangling it with more glue and adhering it to more glands. The insects then suffocate and are slowly digested by enzymes secreted by the plant. This ensures a nutrient boost from its carnivorous diet, supplementing the nutrient-poor soils on which most carnivorous plant species usually grow.

It is interesting that such a large and conspicuous plant species has remained undiscovered until now, even though it was not growing on a terribly remote Amazonian mountain. This is an example of how little is still known about Brazilian biodiversity, even in the more well-developed parts of the country.

Despite being quite distinctive and unusual, the new species also shares some similarities with two other sundew species which were discovered and named 200 years ago, and are found on other highlands over 200km away, also in Southeastern Brazil.

Sadly, the magnificent sundew is already threatened with extinction. The new species was only found on a single mountain top rising above small ranches, coffee farms, and eucalyptus plantations. Invasive plant species were observed almost all the way to the top of the mountain, which is almost completely deforested around the base and is currently not protected by any kind of nature preserve or national park. Nearby mountains were explored by the scientists, but no other populations of this sundew have been found yet.

“We hope that the discovery of such an extraordinary new plant species will bring attention to the conservation of this fragile ecosystem. It was a surprise to all of us that this region of Minas Gerais was so poorly botanized, potentially harboring several other undescribed new plant species”, states Paulo Gonella, from the Systematic Botany Labs of the University of São Paulo, Brazil, who is currently working on the systematics and phylogeny of New World sundews in Munich, Germany.

Original publication:
Gonella, P.M., Rivadavia, F., Fleischmann, A. (2015). Drosera magnifica (Droseraceae): the largest New World sundew, discovered on Facebook. Phytotaxa 220 (3): 257-267. http://dx.doi.org/10.11646/phytotaxa.220.3.4

Contact: Brazil: Paulo Gonella
phone: +49-89-17861-200
USA: Fernando Rivadavia
e-mail: fe_riva@uol.com
phone: +1-415-5162192

Europe: Dr. Andreas Fleischmann, SNSB, Botanische Staatssammlung München

e-mail: fleischmann@bsm.mwn.de
phone: +49-89-17861-265
http://www.botanischestaatssammlung.de
http://www.snsb.de

Weitere Informationen:

http://www.snsb.de
http://www.botanischestaatssammlung.de

Dr. Eva-Maria Natzer | idw - Informationsdienst Wissenschaft

Further reports about: Drosera Phytotaxa insects leaves new species plant species species

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>