Landscape-level habitat connectivity is key for species that depend on longleaf pine

A Bachman's sparrow perches in longleaf pine habitat. Credit: P. Taillie

In the past, fire-dependent longleaf pine forests covered vast, unbroken areas of the southeastern U.S., and Bachman's Sparrows and other species adapted to live in this expansive habitat. Today, however, longleaf pines exist primarily in isolated patches surrounded by agriculture and urban development.

To see whether small but well-managed patches of longleaf pine were enough to support healthy Bachman's Sparrow populations, Taillie and his colleagues surveyed Bachman's Sparrows in 111 habitat patches in spring 2011 and tested what factors best explained their distribution.

They found that while the sparrows did prefer patches that had been burned recently, an even stronger predictor of the presence or absence of Bachman's Sparrows was how much of the land within three kilometers was devoted to longleaf pine–that is, how connected a patch was to a larger longleaf pine landscape.

“While we know a lot about the local habitat characteristics affecting Bachman's Sparrow habitat selection, we don't know much about the role of landscape-level factors,” explains Taillie. “As a result of this research, we found that habitat selection actually appears to depend on a very broad range of scales, from 100 meters to several kilometers.

Other studies have shown similar patterns for other species associated with longleaf pine, which suggests that connectivity may be important to the function of the greater ecosystem, and possibly other highly fragmented ecosystems as well. Thus, conservation management and planning efforts, such as prescribed burning, habitat restoration, and land acquisition, should also consider a broad range of scales to benefit the diverse assemblage of organisms that comprise this community.”

“Taillie, Peterson and Moorman have made a significant contribution to the understanding of Bachman's sparrow's use of the landscape in eastern North Carolina,” adds Jeff Marcus of the Nature Conservancy, a longleaf pine management expert who was not involved in the research.

“As the broader conservation community strives to restore and enhance longleaf pine habitat across its range, it is important to understand not only the habitat characteristics but also the landscape characteristics that will lead to the most robust and resilient outcome for longleaf-associated species. The Bachman's sparrow is an excellent indicator species to help inform longleaf pine habitat needs because it is closely tied to well-managed longleaf habitat.”

###

“The relative importance of multiscale factors in the distribution of Bachman's Sparrow and the implications for ecosystem conservation” is an open-access paper that can be viewed at http://www.aoucospubs.org/doi/full/10.1650/CONDOR-14-137.1.

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology. The journal began in 1899 as the journal of the Cooper Ornithological Club, a group of ornithologists in California that became the Cooper Ornithological Society.

Media Contact

Paul Taillie EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors