Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Land Plant Became Key Marine Species

02.02.2016

The genome of eelgrass (Zostera marina) has now been unveiled. It turns out that the plant, once land-living but now only found in the marine environment, has lost the genes required to survive out of the water. Scientists from the University of Gothenburg participated in the research study, the results of which are published in the scientific journal Nature.

Eelgrass belongs to a group of flowering plants that have adapted to a life in water. As such, it is a suitable candidate for studies of adaptation and evolution.


Eelgrass

Frithjof Moy

‘Since flowering plants have emerged and developed on land, eelgrass can be expected to share many genetic features with many land plants. Studying differences between them can tell us how eelgrass has adapted to a marine environment,’ says Mats Töpel, researcher at the Department of Marine Sciences, University of Gothenburg, who participated in the sequencing of the eelgrass genome.

Töpel is part of an international research collaboration involving 35 research teams. As a result of their efforts, the eelgrass genome has now been published in Nature.

A life on land no longer possible
One interesting discovery made by the scientists is that eelgrass has lost not only the special cells that flowering plants need to be able to ‘breathe’ (meaning to absorb carbon dioxide and release oxygen) but also the genes required to form these cells.

‘This is a good example of how evolution extends beyond mere accumulation of useful traits; organisms can also benefit from losing certain genes and characteristics,’ says Töpel.

Eelgrass – a key species in trouble
Eelgrass belongs to a group of plants generally referred to as seagrass and forms gigantic submarine meadows along European, North American and Asian shores. The plant has adapted to many different environments, from the bitter Arctic cold to the warm waters further south.

In all of these environments, eelgrass serves an important function in the ecosystem by binding sediments and acting as a nursery for young fish and other animals. It also influences our own environment by binding large amounts of nutrients and carbon dioxide.

‘Lately, the eelgrass meadows have disappeared in many places, and a lot of research is underway to figure out how these ecosystems work and what we can do to protect them,’ says Töpel.

Further studies remain
The genome of an organism contains huge amounts of information.
‘So far we have only scratched the surface. A vast number of bioinformatic analyses of eelgrass remain to be done. And the increasing availability of genomes of other organisms enables us to make new comparisons,’ says Töpel.

Link to article: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature16548.html

The research on the eelgrass genome has been led by Professor Jeanine Olsen from the University of Groningen. During parts of the work, Professor Olsen has served as visiting professor at the University of Gothenburg and has then been affiliated with the Linnaeus Centre for Marine Evolutionary Biology (CeMEB, http://cemeb.science.gu.se/).

Contact information:
Mats Töpel, researcher at CeMEB, Department of Marine Sciences, University of Gothenburg
mats.topel@marine.gu.se , mobile: +46 (0)70 406 5292, office: +46 (0)31 786 3738

Weitere Informationen:

http://www.gu.se/english/about_the_university/news-calendar/News_detail//land-pl...

Henrik Axlid | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>