Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Land Plant Became Key Marine Species

02.02.2016

The genome of eelgrass (Zostera marina) has now been unveiled. It turns out that the plant, once land-living but now only found in the marine environment, has lost the genes required to survive out of the water. Scientists from the University of Gothenburg participated in the research study, the results of which are published in the scientific journal Nature.

Eelgrass belongs to a group of flowering plants that have adapted to a life in water. As such, it is a suitable candidate for studies of adaptation and evolution.


Eelgrass

Frithjof Moy

‘Since flowering plants have emerged and developed on land, eelgrass can be expected to share many genetic features with many land plants. Studying differences between them can tell us how eelgrass has adapted to a marine environment,’ says Mats Töpel, researcher at the Department of Marine Sciences, University of Gothenburg, who participated in the sequencing of the eelgrass genome.

Töpel is part of an international research collaboration involving 35 research teams. As a result of their efforts, the eelgrass genome has now been published in Nature.

A life on land no longer possible
One interesting discovery made by the scientists is that eelgrass has lost not only the special cells that flowering plants need to be able to ‘breathe’ (meaning to absorb carbon dioxide and release oxygen) but also the genes required to form these cells.

‘This is a good example of how evolution extends beyond mere accumulation of useful traits; organisms can also benefit from losing certain genes and characteristics,’ says Töpel.

Eelgrass – a key species in trouble
Eelgrass belongs to a group of plants generally referred to as seagrass and forms gigantic submarine meadows along European, North American and Asian shores. The plant has adapted to many different environments, from the bitter Arctic cold to the warm waters further south.

In all of these environments, eelgrass serves an important function in the ecosystem by binding sediments and acting as a nursery for young fish and other animals. It also influences our own environment by binding large amounts of nutrients and carbon dioxide.

‘Lately, the eelgrass meadows have disappeared in many places, and a lot of research is underway to figure out how these ecosystems work and what we can do to protect them,’ says Töpel.

Further studies remain
The genome of an organism contains huge amounts of information.
‘So far we have only scratched the surface. A vast number of bioinformatic analyses of eelgrass remain to be done. And the increasing availability of genomes of other organisms enables us to make new comparisons,’ says Töpel.

Link to article: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature16548.html

The research on the eelgrass genome has been led by Professor Jeanine Olsen from the University of Groningen. During parts of the work, Professor Olsen has served as visiting professor at the University of Gothenburg and has then been affiliated with the Linnaeus Centre for Marine Evolutionary Biology (CeMEB, http://cemeb.science.gu.se/).

Contact information:
Mats Töpel, researcher at CeMEB, Department of Marine Sciences, University of Gothenburg
mats.topel@marine.gu.se , mobile: +46 (0)70 406 5292, office: +46 (0)31 786 3738

Weitere Informationen:

http://www.gu.se/english/about_the_university/news-calendar/News_detail//land-pl...

Henrik Axlid | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>