Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lactate for Brain Energy

24.11.2015

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid (lactate) has been a matter of intense research for many years. A hypothesis from the 1990’s postulates, that a well-orchestrated collaboration between two cell types, astrocytes and neurons, is the basis of brain energy metabolism.


Graphics: UZH; Frank Brüderli

Astrocytes produce lactate, which flows to neurons to cover their high energy needs. Due to a lack of experimental techniques, it remained unclear whether an exchange of lactate existed between astrocytes and neurons. The group of Professor Bruno Weber from the Institute of Pharmacology and Toxicology now shows that there is a significant concentration gradient of lactate between astrocytes and neurons.

Lactate transport is dependent on concentration

The entry and exit of lactate into and out of cells of the body is concentration dependent and is mediated by a specific lactate transporter (called monocarboxylate transporter or MCT). A typical property of certain transporter proteins is called trans-acceleration. “MCTs can be imagined as revolving doors in a shopping mall, which begin to turn faster when more people enter or exit”, explains Bruno Weber, Professor of Multimodal Experimental Imaging at the University of Zurich.

The researchers made use of this property and accelerated the “revolving doors”. By increasing the extracellular pyruvate concentration, they stimulated the outward transport of lactate. Interestingly, lactate levels only changed in astrocytes but not in neurons. Based on this finding and on results from several control experiments a clear lactate gradient between astrocytes and neurons was confirmed. “Due to the fact that lactate transport by MCTs is a passive transport, such a concentration difference is a necessary condition for a lactate flux to be present”, says Bruno Weber.

The scientists utilized a novel fluorescent protein that binds lactate, thereby changing the amount of light released by the fluorescent molecule. This way they could measure the lactate concentration in single cells. “We expressed the lactate sensor in astrocytes or neurons in the brain of anesthetized mice and measured the fluorescence changes with a special two-photon microscope”, explains Bruno Weber.

More than 20 years after the formulation of the hypothesis that neurons metabolize lactate, the researchers have made an important step closer to final proof of this hypothesis. Bruno Weber closes by stating that “Numerous brain diseases have been associated with metabolic deficits. This underlines the importance of an accurate understanding of the processes contributing to brain energy metabolism at the cellular level”.

Literatur:
P. Mächler, M.T. Wyss, M. Elsayed, J. Stobart, R. Gutierrez, A. von Faber-Castell, V. Kaelin, A. Zuend M. San Martín, I. Romero-Gómez, F. Baeza-Lehnert, S. Lengacher, B.L. Schneider, P. Aebischer, P.J. Magistretti, L.F Barros, B. Weber. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metabolism 23, 1–9. November 19, 2015. Doi: org./10.1016/j.cmet.2015.10.010

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>