Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of transcription factor FoxO1 triggers pulmonary hypertension

27.10.2014

Max Planck researchers discover a new therapeutic approach

Pulmonary hypertension is characterised by uncontrolled division of cells in the blood vessel walls. As a result, the vessel walls become increasingly thick. Scientists at the Max Planck Institute for Heart and Lung Research in Bad Nauheim and Giessen University have discovered that transcription factor FoxO1 regulates the division of cells and plays a key role in the development of pulmonary hypertension. The researchers were able to cure pulmonary hypertension in rats by activating FoxO1. The study findings could be used to develop a new treatment for this hitherto incurable disease.


FoxO1 halts unrestrained cell division in pulmonary arteries. The images show photomicrographs of pulmonary arteries of rats with pulmonary hypertension. Whereas the blood vessel of an untreated rat is drastically reduced in diameter (left image), the vessel wall is essentially normalized after activation of FoxO1 (right).

© MPI for Heart and Lung Research

An estimated 100 million people worldwide suffer from pulmonary hypertension. The disease is characterised by progressive narrowing of the pulmonary arteries. The reduced diameter of the vessels leads to poor perfusion. The right ventricle tries to compensate by increasing its pumping action. This, in turn, increases the blood pressure in the pulmonary arteries. In the course of time, chronic overload damages the heart. The result is cardiac insufficiency, also known as congestive heart failure.

Several forms of treatment developed in recent years aim mainly to alleviate the symptoms and relieve strain on the heart. Pulmonary hypertension, however, is still incurable, not least of all due to insufficient knowledge of what causes the disease at the molecular level.

Scientists at the Max Planck Institute for Heart and Lung Research in Bad Nauheim and Justus-Liebig University in Giessen have now achieved a major advance. In transcription factor FoxO1 they have identified a key molecule that plays a decisive role in the regulation of cell division in vascular wall cells and the lifespan of the cells. “The vessel walls of pulmonary arteries are constantly being renewed. A complex interplay of many factors normally ensures that the ratio between dividing and dying cells is balanced,” explains Soni Savai Pullamsetti, who headed the research project.

The researchers found an important clue about the central role of FoxO1 in tissue samples from pulmonary hypertension patients: “In these patients, FoxO1 is not sufficiently active, so that the activity of various genes is not properly controlled,” says Pullamsetti. Experiments on cell cultures and rats have confirmed the results: If we switch off FoxO1 by means of genetic or pharmacological intervention, the vascular wall cells divide more frequently,” says Rajkumar Savai, lead author of the study. Consequently, pulmonary hypertension develops.

Reduced FoxO1 activity is therefore an important factor in the development of pulmonary hypertension. In further experiments it was found that certain growth factors and chemical messengers are responsible for reduced FoxO1 activity. These are substances that are either generally associated with inflammatory processes or that stimulate cell division.

"A potential new form of therapy could focus on increasing the activity of FoxO1 in the pulmonary arteries of patients,” states Werner Seeger, department head at the Max Planck Institute in Bad Nauheim and director of Medical Unit II at Giessen University Hospital. This has already been demonstrated in experimental studies. Accordingly, pathological cell division in pulmonary vessel walls normalized when the researchers boosted FoxO1 activity. “Rats suffering from pulmonary hypertension were essentially cured,” says Seeger. Based on these positive findings, the scientists are optimistic that the study findings can be used to develop a novel therapeutic approach.

Contact

Prof. Dr. Werner Seeger

Original publication

 
Rajkumar Savai, Hamza M Al-Tamari, Daniel Sedding, Baktybek Kojonazarov, Christian Muecke, Rebecca Teske, Mario R. Capecchi, Norbert Weissmann, Friedrich Grimminger, Werner Seeger, Ralph Theo Schermuly, Soni Savai Pullamsetti
Prop-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension

Prof. Dr. Werner Seeger | Max-Planck-Institute
Further information:
http://www.mpg.de/8721341/PullamsettiFoxO1

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>