Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab cell study shows that HOXA5 protein acts as tumor suppressor in breast cancer

20.05.2016

Many breast cancers are marked by a lack of HOXA5 protein, a gene product known to control cell differentiation and death, and lower levels of the protein correspond to poorer outcomes for patients. Now, results of a new study by Johns Hopkins Kimmel Cancer Center scientists suggests a powerful role for the protein in normal breast cells, acting as a tumor suppressor that halts abnormal cell growth.

In their study published online May 9 in the journal Oncogene, scientist Saraswati Sukumar, Ph.D.; her graduate student Wei Wen Teo; and their colleagues show that cells without HOXA5 have an increased capacity to renew themselves and are more invasive than normal breast cells -- in short, they become more tumor like.


A human breast cell lacking HOXA5 (right) shows protruding structures similar to tumor cells, compared with a normal human breast cell (left).

Courtesy of Sara Sukumar, Ph.D.

"Learning more about the biological impact of the HOXA5 protein, which is absent so frequently in breast cancers, may eventually help scientists develop new therapies to treat this disease," says Sukumar.

The loss of HOXA5 leads to an increase in breast cells' "stemness and cell plasticity," meaning they can more easily revert back to an undifferentiated state where they are capable of producing more new cells, says Sukumar, a professor of oncology and pathology at the Johns Hopkins University School of Medicine. Proteins that "promote features of plasticity will allow a tumor to thrive better," she adds.

For the study, the researchers analyzed gene expression from human breast cell lines lacking HOXA5. They found that the protein seems to help maintain several traits in normal breast cells, including the ability to adhere to other epithelial cells, and the presence of molecules marking the cells as differentiated and not capable of self-renewal like breast stem cells.

When Sukumar and the others depleted the HOXA5 protein in other breast cell lines in the lab, the cells became more immature, or "stem like," as well as more mobile. A closer look, she says, revealed that HOXA5 regulates the production of two other proteins: CD24 and E-cadherin. Without CD24, the cells begin to revert toward a stem like state, and without E-cadherin, cells lose some of the "glue" that binds them to other cells, says Sukumar.

As a result, breast cells without HOXA5 were more likely to grow aggressively in lab experiments, forming protruding structures similar to those seen as tumor cells begin to metastasize, the scientists found.

They then tested the behavior of human tumor cells with and without HOXA5 by injecting those cells into the mammary fat pad of mice. Results showed that tumor cells containing the protein carried anywhere from 10 to 17 times fewer breast stem cells, and tumors grown from the injected cells were about three times smaller than those in mice who had received tumor cells with depleted levels of HOXA5.

Sukumar and her colleagues also analyzed data from two international breast cancer genetic data sets and found that the lower the amount of HOXA5 in a tumor, the higher the grade of breast cancer in the patient. Similarly, patients with tumors containing low amounts of HOXA5 protein also had lower cancer relapse-free survival rates.

The scientists are planning further study of HOXA5's role in breast cancer, following up on this work and a study published by Sukumar's lab in 2000 that showed a connection between low levels of HOXA5 and the well-known tumor suppressor protein p53. Sukumar, who is the Barbara B. Rubenstein Professor in Oncology at the Kimmel Cancer Center, recently won a $300,000 grant from the Avon Foundation to continue the work.

###

Other Johns Hopkins scientists who contributed to the study include Vanessa F. Merino, Soonweng Cho, Preethi Korangath, Xiaohui Liang, Ren-chin Wu, Neil M. Neumann, and Andrew J. Ewald.

Funding for the study was provided by the Susan G. Komen Foundation Leadership Grant (SAC110050), the Department of Defense Center of Excellence (W81XWH-04-1-0595), the SKCCC Core grant (P30 CA006973) and the Avon Foundation Center of Excellence.

Media Contact

Vanessa Wasta
wasta@jhmi.edu
410-614-2916

 @HopkinsMedicine

http://www.hopkinsmedicine.org 

Vanessa Wasta | EurekAlert!

Further reports about: CD24 breast cancer breast cells stem cells tumor cells tumor suppressor

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>