Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab cell study shows that HOXA5 protein acts as tumor suppressor in breast cancer

20.05.2016

Many breast cancers are marked by a lack of HOXA5 protein, a gene product known to control cell differentiation and death, and lower levels of the protein correspond to poorer outcomes for patients. Now, results of a new study by Johns Hopkins Kimmel Cancer Center scientists suggests a powerful role for the protein in normal breast cells, acting as a tumor suppressor that halts abnormal cell growth.

In their study published online May 9 in the journal Oncogene, scientist Saraswati Sukumar, Ph.D.; her graduate student Wei Wen Teo; and their colleagues show that cells without HOXA5 have an increased capacity to renew themselves and are more invasive than normal breast cells -- in short, they become more tumor like.


A human breast cell lacking HOXA5 (right) shows protruding structures similar to tumor cells, compared with a normal human breast cell (left).

Courtesy of Sara Sukumar, Ph.D.

"Learning more about the biological impact of the HOXA5 protein, which is absent so frequently in breast cancers, may eventually help scientists develop new therapies to treat this disease," says Sukumar.

The loss of HOXA5 leads to an increase in breast cells' "stemness and cell plasticity," meaning they can more easily revert back to an undifferentiated state where they are capable of producing more new cells, says Sukumar, a professor of oncology and pathology at the Johns Hopkins University School of Medicine. Proteins that "promote features of plasticity will allow a tumor to thrive better," she adds.

For the study, the researchers analyzed gene expression from human breast cell lines lacking HOXA5. They found that the protein seems to help maintain several traits in normal breast cells, including the ability to adhere to other epithelial cells, and the presence of molecules marking the cells as differentiated and not capable of self-renewal like breast stem cells.

When Sukumar and the others depleted the HOXA5 protein in other breast cell lines in the lab, the cells became more immature, or "stem like," as well as more mobile. A closer look, she says, revealed that HOXA5 regulates the production of two other proteins: CD24 and E-cadherin. Without CD24, the cells begin to revert toward a stem like state, and without E-cadherin, cells lose some of the "glue" that binds them to other cells, says Sukumar.

As a result, breast cells without HOXA5 were more likely to grow aggressively in lab experiments, forming protruding structures similar to those seen as tumor cells begin to metastasize, the scientists found.

They then tested the behavior of human tumor cells with and without HOXA5 by injecting those cells into the mammary fat pad of mice. Results showed that tumor cells containing the protein carried anywhere from 10 to 17 times fewer breast stem cells, and tumors grown from the injected cells were about three times smaller than those in mice who had received tumor cells with depleted levels of HOXA5.

Sukumar and her colleagues also analyzed data from two international breast cancer genetic data sets and found that the lower the amount of HOXA5 in a tumor, the higher the grade of breast cancer in the patient. Similarly, patients with tumors containing low amounts of HOXA5 protein also had lower cancer relapse-free survival rates.

The scientists are planning further study of HOXA5's role in breast cancer, following up on this work and a study published by Sukumar's lab in 2000 that showed a connection between low levels of HOXA5 and the well-known tumor suppressor protein p53. Sukumar, who is the Barbara B. Rubenstein Professor in Oncology at the Kimmel Cancer Center, recently won a $300,000 grant from the Avon Foundation to continue the work.

###

Other Johns Hopkins scientists who contributed to the study include Vanessa F. Merino, Soonweng Cho, Preethi Korangath, Xiaohui Liang, Ren-chin Wu, Neil M. Neumann, and Andrew J. Ewald.

Funding for the study was provided by the Susan G. Komen Foundation Leadership Grant (SAC110050), the Department of Defense Center of Excellence (W81XWH-04-1-0595), the SKCCC Core grant (P30 CA006973) and the Avon Foundation Center of Excellence.

Media Contact

Vanessa Wasta
wasta@jhmi.edu
410-614-2916

 @HopkinsMedicine

http://www.hopkinsmedicine.org 

Vanessa Wasta | EurekAlert!

Further reports about: CD24 breast cancer breast cells stem cells tumor cells tumor suppressor

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>