Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Koalas have a funny diet - do they have funny bacteria?

12.05.2015

With their specialized diet of almost exclusively Eucalyptus leaves, do koalas require specialist microbes to help them digest their food? Scientists from the Leibniz Institute for Zoo and Wildlife Research (IZW) investigated the composition of bacterial communities in different digestion-associated organs but found no unusual or special microbial communities when they compared these with those of other mammals.

The study also demonstrates that non-invasive samples such as faecal samples commonly used to assess the composition of microbial communities may not provide an accurate account of the host gut microbiome. The study has just been published in the scientific journal “Scientific Reports”.


Koala

Barbara Feldmann, IZW

The koala (Phascolarctos cinereus) is an arboreal marsupial that has a unique diet consisting almost exclusively of Eucalyptus leaves. Eucalyptus foliage has been described as an “unpromising” dietary source for being low in nutrients but rich in compounds which are toxic to most animals.

Bacteria are thought to play an important role in the digestion of Eucalyptus leaves. However, whether such an exclusive diet influences the composition of koala bacterial communities, or microbiomes, is unknown.

An international team of scientists from the Department of Wildlife Diseases of the Leibniz Institute for Zoo and Wildlife Research (IZW) in Berlin, Germany, University of the Sunshine Coast (Australia), University of Illinois at Urbana-Champaign (USA) and Vienna Zoological Garden characterised the koala microbiomes using next generation sequencing.

The scientists found that koala oral and gut microbiomes were similar in composition to the microbiomes from the same body regions of other mammalian species. Therefore the unique diet of koalas does not seem to influence koala microbial communities inhabiting digestion-associated organs. Furthermore, rectal swabs and faeces were compared, for the first time using high-throughput sequencing, in order to understand whether these two sample types are equivalent in describing koala gut microbiome.

Rectal swabs contained all of the diversity present in faecal samples, along with additional taxa, suggesting that faecal bacterial communities may only represent a subsample of the complex bacterial communities inhabiting the gut. Moreover, the faecal microbiomes of the captive koalas from this study were compared with existing data on wild koalas to understand whether captivity results in major alterations of koala gut microbiome.

The results showed that the profile of captive and wild koalas were similar, suggesting that captivity may not compromise koala microbial health. Because koalas frequently suffer from ocular diseases caused by Chlamydia infection, the microbiome of the koala eye was also examined. This microbial community was very diverse, similar to other mammalian ocular microbiomes but with an unusually high representation of bacteria from a family not observed in other mammals.

Further research will be needed to determine whether this influences the susceptibility of koalas to infections by Chlamydia. This is the first study describing the composition of the eye microbiome of a non-human mammal by high-throughput sequencing and it establishes the healthy baseline for this body part to which microbiomes of diseased states can be compared.

Publication:
Alfano N, Courtiol A, Vielgrader H, Timms P, Roca AL, Greenwood AD (2015): Variation in koala microbiomes within and between individuals: effect of body region and captivity status. SCI REP. Doi: 10.1038/srep10189.

Contact:
Leibniz Institute for Zoo and Wildlife Research (IZW)
Alfred-Kowalke-Str. 17
10315 Berlin
Germany

Niccolò Alfano
Tel.: +49 30 5168-455
alfano@izw-berlin.de

Steven Seet
Tel.: +49 30 5168-125
seet@izw-berlin.de

Weitere Informationen:

http://www.izw-berlin.de

Saskia Donath | Forschungsverbund Berlin e.V.

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>