Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Koala study reveals clues about origins of the human genome

07.11.2014

Eight percent of your genome derives from retroviruses that inserted themselves into human sex cells millions of years ago. Right now the koala retrovirus (KoRV) is invading koala genomes, a process that can help us understand our own viral lineage and make decisions about managing this vulnerable species.

In a recent study, published in Molecular Biology and Evolution, scientists from the University of Illinois discovered that 39 different KoRVs in a koala’s genome were all endogenous, which means passed down to the koala from one parent or the other; one of the KoRVs was found in both parents.


Professor of Animal Sciences Alfred Roca (left) with Alex Greenwood of the Leibnitz Institute, Berlin at the San Diego Zoo.

Koalas are the only known organisms where a retrovirus is transitioning from exogenous to endogenous. An exogenous retrovirus infects a host, inserts its genetic information into the cell’s DNA, and uses the host cell’s machinery to manufacture more viruses. When an exogenous retrovirus infects an egg or sperm cell and the viral genetic information is then passed down to the host’s offspring, the virus becomes an endogenous retrovirus (ERV).

Becoming part of the koala genome

Like humans, koalas have evolutionary defenses against endogenization.

“During the early stages of endogenization, there are huge numbers of retroviruses. KoRVs are present all across koalas’ genomes, with many thousands or tens of thousands of KoRVs in the population,” said Alfred Roca, a Professor of Animal Sciences and member of the Institute for Genomic Biology at the University of Illinois at Urbana-Champaign. “Over time most of them will disappear because these copies of the virus may be present in as few as one individual chromosome. If that one individual happens to not reproduce, or if it reproduces and the other chromosome is passed down, then that ERV will disappear.”

In order to end up with 100 ERVs in an organism, the species may have to start with 10,000 ERVs in its ancestors, Roca said. It takes retroviruses, like KoRV, many thousands of years to become a fixed part of the koala genome, like the eight percent of retroviral DNA that all humans share.

The ERVs that are successfully passed down are protected by the koala’s DNA repair mechanisms so that their rate of mutation is extremely low. Based on the dearth of mutations in the endogenous koala retroviruses, Roca’s team was able to estimate that the KoRVs integrated into the host germ line less than 50,000 years ago. “This is quite recent compared with other ERVs that are millions of years old and have accumulated mutations,” said first author Yasuko Ishida, a research specialist in Roca’s lab.

Overcoming retroviral fitness effects

In koalas, KoRV has been linked to leukemia, lymphoma, and immune suppression, which can lead to increased susceptibility to chlamydia.

“It seems likely that for thousands of years since this virus integrated, the koala host has suffered fitness effects,” Roca said. “It is possible that across species, when a host lineage has been invaded by ERVs, it had to go through this process of adaptation between host and virus, which is a very sad finding. It may be a very long, slow, painful process for the host species, one which human ancestors have gone through and overcome many times in the distant past.”

In mammals, retroviral DNA is associated with placental development and has been found to protect hosts from harmful exogenous retroviruses.

“But once retroviruses become part of the host, they begin to help the host because that is how they survive,” Roca said. “They will be better off if they evolve to protect the host. Over time, the detrimental effects go down and the beneficial effects go up.”

Conserving koala populations

In the 1900s, koalas were extensively hunted for their fur. In an effort to preserve koalas, a few individuals were moved to an island off the coast of Australia. Years later, the inbred island population was reintroduced to southern Australia. Today some of the southern koalas remain uninfected while almost all northern koalas have dozens of KoRVs in their genomes.

“Which is the lesser of two evils?” Roca said. “Do you try to conserve genetic diversity, which is present in the northern populations along with the retrovirus or do you conserve southern populations that don’t have the retrovirus but are horribly inbred?”

Roca’s research team included research specialist Yasuko Ishida, graduate student Kai Zhao, and scientific collaborator Alex Greenwood of the Leibnitz Institute in Berlin. Their work was supported by the National Institute of General Medical Sciences. The San Diego Zoo, Columbus Zoo, San Francisco Zoo, and Riverbanks Zoo provided the koala samples.

Written By: Claire Sturgeon. Photos by Kathryn Coulter and Yasuko Ishida

Nicholas Vasi | EurekAlert!
Further information:
http://www.igb.illinois.edu/misc_news/koala-study-reveals-clues-about-origins-human-genome

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>