Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer sea snail a target for new drugs

07.07.2015

University of Queensland pain treatment researchers have discovered thousands of new peptide toxins hidden deep within the venom of just one type of Queensland cone snail. Researchers hope the new molecules will be promising leads for new drugs to treat pain and cancer.

Professor Paul Alewood, from UQ's Institute for Molecular Bioscience, said the team used biochemical and bioinformatics tools to develop a new method to analyse the structure of the venom toxins, allowing them to delve deeper than ever before. "Cone snail venom is known to contain toxins proven to be valuable drug leads," he said. "This study gives the first-ever snapshot of the toxins that exist in the venom of a single cone snail. "Cone snail venoms are a complex cocktail of many chemicals and most of these toxins have been overlooked in the past."


This is a Conus episcopatus snail.

Credit: Professor Richard Lewis, IMB

Using their new method that involved accurately measuring and analysing the structure, activity and composition of the diverse range of proteins within venom, researchers discovered the highest number of peptides (mini-proteins) produced in a single cone snail.

"We also discovered six original 'frameworks' - 3D-shaped molecules suitable as drug leads - which we expect will support drug development in the near future," Professor Alewood said.

There are 25 known frameworks discovered over the past 25 years, many of which have already led to a drug or drug lead for several diseases.

"We expect these newly discovered frameworks will also lead to new medications, which can be used to treat pain, cancer and a range of other diseases."

The cone snail species studied by the researchers (Conus episcopatus) is found along the east coast of Australia and is one of 700 different species of cone snails.

"We anticipate there are a lot more interesting molecules to be found in the venom of other species, and we are keen to explore these using our new approach,"

"This new method of analysis can also be used in research on other animal venoms, or in related fields, such as studying protein expression from cells.

"It will help us gain a better understanding of biology, look for disease patterns or discover potential new drugs."

The study, published in Proceedings of the National Academy of Sciences journal, was funded by the National Health and Medical Research Council.

Media Contact

Gemma Ward
g.ward1@uq.edu.au
61-733-462-155

 @uq_news

http://www.uq.edu.au 

Gemma Ward | EurekAlert!

Further reports about: cone snail cone snails diseases drugs protein expression sea snail snail species structure venom

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>