Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer sea snail a target for new drugs

07.07.2015

University of Queensland pain treatment researchers have discovered thousands of new peptide toxins hidden deep within the venom of just one type of Queensland cone snail. Researchers hope the new molecules will be promising leads for new drugs to treat pain and cancer.

Professor Paul Alewood, from UQ's Institute for Molecular Bioscience, said the team used biochemical and bioinformatics tools to develop a new method to analyse the structure of the venom toxins, allowing them to delve deeper than ever before. "Cone snail venom is known to contain toxins proven to be valuable drug leads," he said. "This study gives the first-ever snapshot of the toxins that exist in the venom of a single cone snail. "Cone snail venoms are a complex cocktail of many chemicals and most of these toxins have been overlooked in the past."


This is a Conus episcopatus snail.

Credit: Professor Richard Lewis, IMB

Using their new method that involved accurately measuring and analysing the structure, activity and composition of the diverse range of proteins within venom, researchers discovered the highest number of peptides (mini-proteins) produced in a single cone snail.

"We also discovered six original 'frameworks' - 3D-shaped molecules suitable as drug leads - which we expect will support drug development in the near future," Professor Alewood said.

There are 25 known frameworks discovered over the past 25 years, many of which have already led to a drug or drug lead for several diseases.

"We expect these newly discovered frameworks will also lead to new medications, which can be used to treat pain, cancer and a range of other diseases."

The cone snail species studied by the researchers (Conus episcopatus) is found along the east coast of Australia and is one of 700 different species of cone snails.

"We anticipate there are a lot more interesting molecules to be found in the venom of other species, and we are keen to explore these using our new approach,"

"This new method of analysis can also be used in research on other animal venoms, or in related fields, such as studying protein expression from cells.

"It will help us gain a better understanding of biology, look for disease patterns or discover potential new drugs."

The study, published in Proceedings of the National Academy of Sciences journal, was funded by the National Health and Medical Research Council.

Media Contact

Gemma Ward
g.ward1@uq.edu.au
61-733-462-155

 @uq_news

http://www.uq.edu.au 

Gemma Ward | EurekAlert!

Further reports about: cone snail cone snails diseases drugs protein expression sea snail snail species structure venom

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

International team publishes roadmap to enhance radioresistance for space colonization

21.02.2018 | Physics and Astronomy

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>