Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keystone species: Which are the most important functional genes in an ecosystem?

21.07.2015

Microbial ecosystems such as biological wastewater treatment plants and the human gastrointestinal tract are home to a vast diversity of bacterial species. Scientists of the Luxembourg Centre for Systems Biomedicine (LCSB) and the Life Science Research Unit (LSRU) of the University of Luxembourg, in collaboration with US researchers, have now succeeded for the first time in determining key functional genes and the organisms encoding these in such ecological systems, working from extensive data of bacterial genetics and bacterial metabolism.

Keystone species are species that play central roles in the functioning of ecosystems. These are typically not the most abundant species but far more important are organisms carry copies of distinct, essential genes – researchers here speak of “keystone genes” – which are also transcribed disproportionately often.


The researchers took samples from a wastewater treatment plant during different seasons. They then characterised the entirety of all genes.

LCSB 2015

The insights from the group of FNR-ATTRACT fellow Prof. Paul Wilmes are also of medical importance: When microbial communities come out of balance in the course of disease, a positive health effect may be achieved by supporting keystone bacterial species in a targeted fashion. The study was published in the new journal of the Nature Publishing Group, npj Biofilms and Microbiomes (http://www.nature.com/articles/npjbiofilms20157).

So far, scientists have had difficulties in analysing the dependencies between the many bacteria in a complex ecosystem such as the gut or a biological treatment plant. In most cases, they record the different species that occur together under changing environmental conditions. Similar patterns of variation are hereby considered an indication of interaction and highly connected species are thought to represent keystone species.

“The emergence of the new omics technologies, including genomics, transcriptomics or proteomics, has brought with it entirely new and exciting possibilities for researching ecosystems,” Paul Wilmes says. “After high-throughput analyses, in which we collect giant quantities of data, we can now infer community-wide networks on the computer. From these, we can for example identify key functional traits within the community and we are then able to attribute such traits to specific community members.”

To achieve this, Wilmes and his group took samples from a wastewater treatment plant during different seasons. They then characterised the entirety of all genes, analysed what genes were being transcribed and gained an overview of the resulting proteins.

“With this combination of metagenomics, metatranscriptomics and metaproteomics, we were able to reconstruct the metabolic networks of the community at a given point in time,” says Dr. Anna Heintz-Buschart, LCSB scientist and first author of the publication. “This tells us what substances can be produced by the community in general, what genes exist in multiple copies in different bacterial species and in what quantities certain proteins are produced.”

Armed with this knowledge, the researchers then went about first identifying “keystone genes” and linking these to keystone species. “The identified genes and species fulfil essential functions in the ecosystem,” Paul Wilmes explains: “Many metabolic pathways and species are dependent on them. When they are absent, it has dramatic consequences for the entire ecosystem. But, if you were to learn on how to support them, then the ecosystem would likely be more productive and resilient.”


LCSB director Prof. Rudi Balling explains the medical importance of the new insights: “We assume that diseases such as Parkinson’s could in part be caused by a disruption in the composition of microbial communities in the human body. With this knowledge about keystone genes and species, we can take a closer look at the molecular causes in future – and explore measures for restoring ecological balance in the gut, for example.”

Weitere Informationen:

http://www.nature.com/articles/npjbiofilms20157 - Scientific publication
http://wwwen.uni.lu/lcsb/people/paul_wilmes - Personal web page of Associate Professor Paul Wilmes
http://wwwen.uni.lu/lcsb - Homepage of the Luxembourg Centre for Systems Biomedicine (LCSB)

Britta Schlüter | Universität Luxemburg - Université du Luxembourg

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>