Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keystone species: Which are the most important functional genes in an ecosystem?

21.07.2015

Microbial ecosystems such as biological wastewater treatment plants and the human gastrointestinal tract are home to a vast diversity of bacterial species. Scientists of the Luxembourg Centre for Systems Biomedicine (LCSB) and the Life Science Research Unit (LSRU) of the University of Luxembourg, in collaboration with US researchers, have now succeeded for the first time in determining key functional genes and the organisms encoding these in such ecological systems, working from extensive data of bacterial genetics and bacterial metabolism.

Keystone species are species that play central roles in the functioning of ecosystems. These are typically not the most abundant species but far more important are organisms carry copies of distinct, essential genes – researchers here speak of “keystone genes” – which are also transcribed disproportionately often.


The researchers took samples from a wastewater treatment plant during different seasons. They then characterised the entirety of all genes.

LCSB 2015

The insights from the group of FNR-ATTRACT fellow Prof. Paul Wilmes are also of medical importance: When microbial communities come out of balance in the course of disease, a positive health effect may be achieved by supporting keystone bacterial species in a targeted fashion. The study was published in the new journal of the Nature Publishing Group, npj Biofilms and Microbiomes (http://www.nature.com/articles/npjbiofilms20157).

So far, scientists have had difficulties in analysing the dependencies between the many bacteria in a complex ecosystem such as the gut or a biological treatment plant. In most cases, they record the different species that occur together under changing environmental conditions. Similar patterns of variation are hereby considered an indication of interaction and highly connected species are thought to represent keystone species.

“The emergence of the new omics technologies, including genomics, transcriptomics or proteomics, has brought with it entirely new and exciting possibilities for researching ecosystems,” Paul Wilmes says. “After high-throughput analyses, in which we collect giant quantities of data, we can now infer community-wide networks on the computer. From these, we can for example identify key functional traits within the community and we are then able to attribute such traits to specific community members.”

To achieve this, Wilmes and his group took samples from a wastewater treatment plant during different seasons. They then characterised the entirety of all genes, analysed what genes were being transcribed and gained an overview of the resulting proteins.

“With this combination of metagenomics, metatranscriptomics and metaproteomics, we were able to reconstruct the metabolic networks of the community at a given point in time,” says Dr. Anna Heintz-Buschart, LCSB scientist and first author of the publication. “This tells us what substances can be produced by the community in general, what genes exist in multiple copies in different bacterial species and in what quantities certain proteins are produced.”

Armed with this knowledge, the researchers then went about first identifying “keystone genes” and linking these to keystone species. “The identified genes and species fulfil essential functions in the ecosystem,” Paul Wilmes explains: “Many metabolic pathways and species are dependent on them. When they are absent, it has dramatic consequences for the entire ecosystem. But, if you were to learn on how to support them, then the ecosystem would likely be more productive and resilient.”


LCSB director Prof. Rudi Balling explains the medical importance of the new insights: “We assume that diseases such as Parkinson’s could in part be caused by a disruption in the composition of microbial communities in the human body. With this knowledge about keystone genes and species, we can take a closer look at the molecular causes in future – and explore measures for restoring ecological balance in the gut, for example.”

Weitere Informationen:

http://www.nature.com/articles/npjbiofilms20157 - Scientific publication
http://wwwen.uni.lu/lcsb/people/paul_wilmes - Personal web page of Associate Professor Paul Wilmes
http://wwwen.uni.lu/lcsb - Homepage of the Luxembourg Centre for Systems Biomedicine (LCSB)

Britta Schlüter | Universität Luxemburg - Université du Luxembourg

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>