Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Keeping the Kraken asleep: inhibiting CDK6 prevents leukemic relapse


Despite enormous progress in cancer therapy, many patients still relapse because their treatment addresses the symptoms of the disease rather than the cause, the so-called stem cells. Work in the group of Veronika Sexl at the University of Veterinary Medicine, Vienna has given a tantalizing clue to a solution. In the current issue of Blood, the scientists report that the cell-cycle kinase CDK6 is required for activation of the stem cells responsible for causing leukemia.

Hematopoietic stem cells (HSCs) are normally inactive, i.e. quiescent. When new blood cells are needed, for example to replace blood that has been lost, HSCs start to multiply and develop into mature blood cells. If the process is initiated at an inappropriate time, hematopoietic diseases such as leukemia may result and leukemic stem cells may develop.

CDK6 is needed for leukemic stem cell activation (left). When CDK6 is absent, the LSC remains in a quiescent state and leukemia formation is prohibited (right).

Angelika Berger / Vetmeduni Vienna

These represent a major challenge to leukemia therapy: they are quiescent and thus protected from elimination by the immune system and from treatment such as chemotherapy. Leukemic stem cells frequently cause relapse in cancer patients, often years or even decades after an apparently successful treatment.

Working with stem cells isolated from mice, Ruth Scheicher and colleagues at the University of Veterinary Medicine, Vienna have investigated possible differences between leukemic stem cells and the healthy stem cells in the body.

They looked in particular at the function of the CDK6 protein, which is known to be involved in controlling the cell cycle. Surprisingly, CDK6 was also found to regulate the activation of hematopoietic and leukemic stem cells, which it does by inhibiting the transcription factor Egr1. Upon loss of CDK6, Egr1 becomes active and prevents stem cells from dividing.

In a further twist to the tale, the mechanism operates only when hematopoietic stem cells are stressed, e.g. in leukemia, and not in the normal physiological situation.

Scheicher is quick to note the significance of her finding. “CDK6 is absolutely necessary for leukemic stem cells to induce disease but plays no part in normal hematopoiesis. We thus have a novel opportunity to target leukemia at its origin. Inhibiting CDK6 should attack leukemic stem cells while leaving healthy HSCs unaffected”.


The article ‘CDK6 as a key regulator of hematopoietic and leukemic stem cell activation’ by Scheicher R, Hoelbl-Kovacic A, Bellutti F, Tigan AS, Prchal-Murphy M, Heller G, Schneckenleithner C, Salazar-Roa M, Zöchbauer-Müller S, Zuber J, Malumbres M, Kollmann K and Sexl V. was published in the journal Blood.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms.

Scientific Contact:
Prof. Veronika Sexl
Institute of Pharmacology and Toxicology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2910

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153

Weitere Informationen:

Dr. Susanna Kautschitsch | Veterinärmedizinische Universität Wien

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>