Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Junk DNA not as worthless as once thought

23.07.2014

Researchers discover precise regulation mechanisms and suspect correlation with immune response

Around 75 per cent of the supposed functionless DNA in the human genome is transcribed into so-called non-coding RNAs (ribonucleic acid). To date, little is known about its function. Together with colleagues from the Fraunhofer Institute for Cell Therapy and Immunology (IZI) and Leipzig University, researchers from the Helmholtz Centre for Environmental Research (UFZ) have now been able to demonstrate that the production of non-coding RNAs is precisely regulated. They suspect that non-coding RNAs might play a role in regulating cellular processes or in the modified immune response following exposure to environmental toxicants. 
 
Around two per cent of the human genome acts as a blueprint for proteins, which work as molecular machines assuming important functions in the cells of our bodies. The rest of the genome - still 98 per cent - is more or less a blank page. The areas which do not code for proteins are also referred to as junk DNA. But are they really nothing but a redundant burden? "This is one of the big questions currently hanging over genome research," says Dr Jörg Hackermüller, bioinformatician at the Helmholtz Centre for Environmental Research (UFZ). "They continue to represent vast blank spots on the genomic map - there is still a lot waiting to be discovered here."


In future investigations, Hackermüller and his team therefore want to test the influence that environmental pollutants have on the appearance of non-coding RNAs in immune cells.

Photo: Alexander Raths Fotolia.com

As early as 2007, in a study published in the scientific magazine Nature, Hackermüller, together with a number of colleagues, was able to demonstrate that not only two per cent of the genome is transcribed into RNA - a template which normally serves the production of proteins - but practically the entire genome, even those areas which are completely neglected when looking at blueprints for proteins. Hackermüller: "This finding gave rise to a lively discussion as to whether this could be caused by chance events or mistakes in the regulation of cellular processes. However, I doubt that nature is so wasteful with resources that it would produce such masses of RNA for no specific reason."

In their latest study published in the specialist magazine "Genome Biology", Hackermüller and his team, in cooperation with Professor Friedemann Horn and Professor Peter F Stadler from Leipzig University and the Fraunhofer Institute for Cell Therapy and Immunology IZI, were able to bridge yet another knowledge gap. The transcription of non-coding regions in the genome is precisely regulated by cellular signaling pathways - and on a grand scale: up to 80 per cent of the RNA copies were non-coding. "We did not expect such a magnitude," says Hackermüller. "This is not indicative of a chance product - it is highly likely that the non-coding RNAs perform a similarly important functions to that of protein-coding RNA."

... more about:
»Cell »DNA »ENCODE »Environmental »Helmholtz »IZI »Immunology »RNA »RNAs »UFZ »non-coding

Furthermore, the researchers have discovered a new species of non-coding RNA, so-called macroRNA. It is 50 to 200 times the size of regular, protein-coding RNA. "What is remarkable is that parts of these macroRNAs are conserved throughout mammals as well as birds and reptiles," says Horn. "Furthermore, in aggressive types of brain tumours, several macroRNAs are produced much more actively than in tumours with a good prognosis. This is further evidence that non-coding macroRNAs play an important role in cellular processes."

Hackermüller suspects that non-coding RNAs have an important function at the epigenetic level, for example as a type of cellular long-term memory: "This could also explain why the health effects caused by exposure to hazardous environmental substances often do not emerge until years later." In future investigations, Hackermüller and his team therefore want to test the influence that environmental pollutants have on the appearance of non-coding RNAs in immune cells. Nicole Silbermann

The study:
Publikation: Hackermüller J, Reiche K, Otto C, Hösler N, Blumert C, Brocke-Heidrich C, Böhlig L, Nitsche A, Kasack K, Ahnert P, Krupp W, Engeland K, Stadler PF, Horn F. Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein coding RNAs. Genome Biology 15:R48. 2014.
http://genomebiology.com/2014/15/3/R48


Further information:
Helmholtz Centre for Environmental Research (UFZ)
Proteomics Department
Helmholtz University Young Investigators Group Bioinformatics & Transcriptomics
Dr Jörg Hackermüller
+49 (0)341 235 1561
http://www.ufz.de/index.php?en=30930


Press contact:
Helmholtz Centre for Environmental Research
Telephone: +49 (0)341 235-1635, -1635
http://www.ufz.de/index.php?en=640
or:
Fraunhofer Institute for Cell Therapy and Immunology (IZI)
Jens Augustin
Telephone: +49 (0)341 355369320
http://www.izi.fraunhofer.de/presse.html?&L=1


Links:
ENCODE Nature 2007: ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447:799-816, 2007.
http://www.nature.com/nature/journal/v447/n7146/full/nature05874.html
http://www.izi.fraunhofer.de/uploads/media/070614_Genetischer_Muell_als_Ordnungshueter.pdf

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Fraunhofer Institute for Cell Therapy and Immunology IZI investigates and develops specific problem solutions at the interfaces of medicine, life sciences and engineering. The Institute practices contract research for biotechnological, pharmaceutical and medical-technological companies, hospitals, diagnostic laboratories and research facilities. Within the Business Units of Drugs, Cell Therapy, Diagnostic and Biobanking, the Institute develops, optimizes and validates methods, materials and products. The Institute's core competencies are located in the field of Regenerative Medicine, in particular in the indication areas of oncology, ischemia and autoimmune, inflammatory and infectious diseases. The Institute is clinically oriented and conducts quality checks and the GMP-compliant manufacture of investigational medicinal products. Moreover, the Institute provides support in obtaining manufacturing authorizations and approvals. http://www.izi.fraunhofer.de

Tilo Arnhold | UFZ News

Further reports about: Cell DNA ENCODE Environmental Helmholtz IZI Immunology RNA RNAs UFZ non-coding

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>