Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Is There Organic Matter on Mars?


Chloromethane discovered on the “Red Planet” possibly comes from the Martian soil – meteorites probably provided its carbon and hydrogen

Organic matter recently detected by NASA’s robotic rover “Curiosity” is probably not due to contamination brought from Earth as researchers originally thought. A team of German and British scientists led by geoscientist Prof. Dr. Frank Keppler from Heidelberg University now suggests that the gaseous chlorinated organic compound – chloromethane – recently found on the “Red Planet” most likely comes from the soil of Mars, with its carbon and hydrogen probably deriving from meteorites that fell on the planet’s surface.

This assumption is supported by isotope measurements made by the scientists in which they replicated some of the Mars lander experiments. In these investigations, samples from a 4.6 billion old meteorite that fell in Australia in 1969 were used. Results from this study have been published in “Scientific Reports”.

The question of whether there is organic matter on Mars, an essential requirement for life on this planet, has been debated by the scientific community for a long time. To address this issue, the NASA Curiosity rover, which landed on Mars in August 2012, has conducted investigations on Martian soil. Upon heating soil samples simple organic molecules were detected and identified by on-board measurement systems.

One of the substances detected was chloromethane, which contains carbon, hydrogen and chlorine atoms. In the opinion of the NASA experts, however, this compound could have been formed during the soil heating experiments by a reaction between perchlorates in Martian soil and an on-board chemical.

Thus, even though the chlorine in the chloromethane comes from Mars, the carbon and hydrogen were considered to have been brought to Mars by the Curiosity rover. Interestingly this kind of organic material had also been identified in earlier experiments during the Viking mission in 1976, but the compound was considered a terrestrial contaminant.

The German-British team of scientists led by Prof. Keppler has investigated whether there could be another explanation for the observations of chloromethane on Mars. They assumed that the gaseous chlorinated organic compound is indeed derived from Martian soil, but that its carbon and hydrogen are provided by meteorites.

To support their hypothesis, the researchers examined samples from a 4.6 billion years old meteorite that fell on earth in 1969 near the Australian city of Murchison. According to Prof. Keppler this meteoritic material contains two per cent carbon. Space experts assume that a relatively large amount of micrometeorites with a similar composition to the one of Murchison fall on the surface of Mars each year.

When Frank Keppler and his colleagues heated the Murchison meteoritic matter in the presence of chlorine they observed chloromethane. “The ratio of heavy to light carbon and hydrogen atoms, known as the isotopic fingerprint of a gas, clearly shows that the organic material has an extraterrestrial origin,” Prof. Keppler says. The scientists transferred their results to Martian surface conditions which receive meteorites of similar composition.

“Hence chloromethane which was found by the two separate Mars missions could be formed by the Martian soil, and the carbon and hydrogen would have their origin in the micrometeorites that rain down on Mars,” explains Prof. Keppler. “However, it cannot be ruled out that microorganisms which might have been living on the planet some time ago might have provided a fraction of the organic matter.”

The Heidelberg scientist assumes that in future Mars missions the isotopic fingerprint of the chloromethane could determine whether its origin is from organic material that is indigenous to Mars, was deposited by meteorites or is contamination from the landers sent from Earth.

Frank Keppler leads the Biogeochemistry working group at Heidelberg University's Institute of Earth Sciences. In addition to scientists from Heidelberg, experts from the Max Planck Institute of Chemistry in Mainz and the School of Biological Sciences at Queen‘s University in Belfast contributed to this research.

Original publication:
F. Keppler, D.B. Harper, M. Greule, U. Ott, T. Sattler, G.F. Schöler & J.T.G. Hamilton: Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Scientific Reports 4 : 7010 (13 November 2014), doi: 10.1038/srep0701

Prof. Dr. Frank Keppler
Institute of Earth Sciences
Phone +49 (0) 6221 54-6009

Communications and Marketing
Press Office, phone +49 6221 54-2311

Weitere Informationen:

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>