Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is There Organic Matter on Mars?

13.11.2014

Chloromethane discovered on the “Red Planet” possibly comes from the Martian soil – meteorites probably provided its carbon and hydrogen

Organic matter recently detected by NASA’s robotic rover “Curiosity” is probably not due to contamination brought from Earth as researchers originally thought. A team of German and British scientists led by geoscientist Prof. Dr. Frank Keppler from Heidelberg University now suggests that the gaseous chlorinated organic compound – chloromethane – recently found on the “Red Planet” most likely comes from the soil of Mars, with its carbon and hydrogen probably deriving from meteorites that fell on the planet’s surface.

This assumption is supported by isotope measurements made by the scientists in which they replicated some of the Mars lander experiments. In these investigations, samples from a 4.6 billion old meteorite that fell in Australia in 1969 were used. Results from this study have been published in “Scientific Reports”.

The question of whether there is organic matter on Mars, an essential requirement for life on this planet, has been debated by the scientific community for a long time. To address this issue, the NASA Curiosity rover, which landed on Mars in August 2012, has conducted investigations on Martian soil. Upon heating soil samples simple organic molecules were detected and identified by on-board measurement systems.

One of the substances detected was chloromethane, which contains carbon, hydrogen and chlorine atoms. In the opinion of the NASA experts, however, this compound could have been formed during the soil heating experiments by a reaction between perchlorates in Martian soil and an on-board chemical.

Thus, even though the chlorine in the chloromethane comes from Mars, the carbon and hydrogen were considered to have been brought to Mars by the Curiosity rover. Interestingly this kind of organic material had also been identified in earlier experiments during the Viking mission in 1976, but the compound was considered a terrestrial contaminant.

The German-British team of scientists led by Prof. Keppler has investigated whether there could be another explanation for the observations of chloromethane on Mars. They assumed that the gaseous chlorinated organic compound is indeed derived from Martian soil, but that its carbon and hydrogen are provided by meteorites.

To support their hypothesis, the researchers examined samples from a 4.6 billion years old meteorite that fell on earth in 1969 near the Australian city of Murchison. According to Prof. Keppler this meteoritic material contains two per cent carbon. Space experts assume that a relatively large amount of micrometeorites with a similar composition to the one of Murchison fall on the surface of Mars each year.

When Frank Keppler and his colleagues heated the Murchison meteoritic matter in the presence of chlorine they observed chloromethane. “The ratio of heavy to light carbon and hydrogen atoms, known as the isotopic fingerprint of a gas, clearly shows that the organic material has an extraterrestrial origin,” Prof. Keppler says. The scientists transferred their results to Martian surface conditions which receive meteorites of similar composition.

“Hence chloromethane which was found by the two separate Mars missions could be formed by the Martian soil, and the carbon and hydrogen would have their origin in the micrometeorites that rain down on Mars,” explains Prof. Keppler. “However, it cannot be ruled out that microorganisms which might have been living on the planet some time ago might have provided a fraction of the organic matter.”

The Heidelberg scientist assumes that in future Mars missions the isotopic fingerprint of the chloromethane could determine whether its origin is from organic material that is indigenous to Mars, was deposited by meteorites or is contamination from the landers sent from Earth.

Frank Keppler leads the Biogeochemistry working group at Heidelberg University's Institute of Earth Sciences. In addition to scientists from Heidelberg, experts from the Max Planck Institute of Chemistry in Mainz and the School of Biological Sciences at Queen‘s University in Belfast contributed to this research.

Original publication:
F. Keppler, D.B. Harper, M. Greule, U. Ott, T. Sattler, G.F. Schöler & J.T.G. Hamilton: Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Scientific Reports 4 : 7010 (13 November 2014), doi: 10.1038/srep0701

Contact:
Prof. Dr. Frank Keppler
Institute of Earth Sciences
Phone +49 (0) 6221 54-6009
frank.keppler@geow.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de


Weitere Informationen:

http://www.uni-heidelberg.de/fakultaeten/chemgeo/geow/researchgroups/keppler/index.html

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>