Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is There Organic Matter on Mars?

13.11.2014

Chloromethane discovered on the “Red Planet” possibly comes from the Martian soil – meteorites probably provided its carbon and hydrogen

Organic matter recently detected by NASA’s robotic rover “Curiosity” is probably not due to contamination brought from Earth as researchers originally thought. A team of German and British scientists led by geoscientist Prof. Dr. Frank Keppler from Heidelberg University now suggests that the gaseous chlorinated organic compound – chloromethane – recently found on the “Red Planet” most likely comes from the soil of Mars, with its carbon and hydrogen probably deriving from meteorites that fell on the planet’s surface.

This assumption is supported by isotope measurements made by the scientists in which they replicated some of the Mars lander experiments. In these investigations, samples from a 4.6 billion old meteorite that fell in Australia in 1969 were used. Results from this study have been published in “Scientific Reports”.

The question of whether there is organic matter on Mars, an essential requirement for life on this planet, has been debated by the scientific community for a long time. To address this issue, the NASA Curiosity rover, which landed on Mars in August 2012, has conducted investigations on Martian soil. Upon heating soil samples simple organic molecules were detected and identified by on-board measurement systems.

One of the substances detected was chloromethane, which contains carbon, hydrogen and chlorine atoms. In the opinion of the NASA experts, however, this compound could have been formed during the soil heating experiments by a reaction between perchlorates in Martian soil and an on-board chemical.

Thus, even though the chlorine in the chloromethane comes from Mars, the carbon and hydrogen were considered to have been brought to Mars by the Curiosity rover. Interestingly this kind of organic material had also been identified in earlier experiments during the Viking mission in 1976, but the compound was considered a terrestrial contaminant.

The German-British team of scientists led by Prof. Keppler has investigated whether there could be another explanation for the observations of chloromethane on Mars. They assumed that the gaseous chlorinated organic compound is indeed derived from Martian soil, but that its carbon and hydrogen are provided by meteorites.

To support their hypothesis, the researchers examined samples from a 4.6 billion years old meteorite that fell on earth in 1969 near the Australian city of Murchison. According to Prof. Keppler this meteoritic material contains two per cent carbon. Space experts assume that a relatively large amount of micrometeorites with a similar composition to the one of Murchison fall on the surface of Mars each year.

When Frank Keppler and his colleagues heated the Murchison meteoritic matter in the presence of chlorine they observed chloromethane. “The ratio of heavy to light carbon and hydrogen atoms, known as the isotopic fingerprint of a gas, clearly shows that the organic material has an extraterrestrial origin,” Prof. Keppler says. The scientists transferred their results to Martian surface conditions which receive meteorites of similar composition.

“Hence chloromethane which was found by the two separate Mars missions could be formed by the Martian soil, and the carbon and hydrogen would have their origin in the micrometeorites that rain down on Mars,” explains Prof. Keppler. “However, it cannot be ruled out that microorganisms which might have been living on the planet some time ago might have provided a fraction of the organic matter.”

The Heidelberg scientist assumes that in future Mars missions the isotopic fingerprint of the chloromethane could determine whether its origin is from organic material that is indigenous to Mars, was deposited by meteorites or is contamination from the landers sent from Earth.

Frank Keppler leads the Biogeochemistry working group at Heidelberg University's Institute of Earth Sciences. In addition to scientists from Heidelberg, experts from the Max Planck Institute of Chemistry in Mainz and the School of Biological Sciences at Queen‘s University in Belfast contributed to this research.

Original publication:
F. Keppler, D.B. Harper, M. Greule, U. Ott, T. Sattler, G.F. Schöler & J.T.G. Hamilton: Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Scientific Reports 4 : 7010 (13 November 2014), doi: 10.1038/srep0701

Contact:
Prof. Dr. Frank Keppler
Institute of Earth Sciences
Phone +49 (0) 6221 54-6009
frank.keppler@geow.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de


Weitere Informationen:

http://www.uni-heidelberg.de/fakultaeten/chemgeo/geow/researchgroups/keppler/index.html

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>