Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is There Organic Matter on Mars?

13.11.2014

Chloromethane discovered on the “Red Planet” possibly comes from the Martian soil – meteorites probably provided its carbon and hydrogen

Organic matter recently detected by NASA’s robotic rover “Curiosity” is probably not due to contamination brought from Earth as researchers originally thought. A team of German and British scientists led by geoscientist Prof. Dr. Frank Keppler from Heidelberg University now suggests that the gaseous chlorinated organic compound – chloromethane – recently found on the “Red Planet” most likely comes from the soil of Mars, with its carbon and hydrogen probably deriving from meteorites that fell on the planet’s surface.

This assumption is supported by isotope measurements made by the scientists in which they replicated some of the Mars lander experiments. In these investigations, samples from a 4.6 billion old meteorite that fell in Australia in 1969 were used. Results from this study have been published in “Scientific Reports”.

The question of whether there is organic matter on Mars, an essential requirement for life on this planet, has been debated by the scientific community for a long time. To address this issue, the NASA Curiosity rover, which landed on Mars in August 2012, has conducted investigations on Martian soil. Upon heating soil samples simple organic molecules were detected and identified by on-board measurement systems.

One of the substances detected was chloromethane, which contains carbon, hydrogen and chlorine atoms. In the opinion of the NASA experts, however, this compound could have been formed during the soil heating experiments by a reaction between perchlorates in Martian soil and an on-board chemical.

Thus, even though the chlorine in the chloromethane comes from Mars, the carbon and hydrogen were considered to have been brought to Mars by the Curiosity rover. Interestingly this kind of organic material had also been identified in earlier experiments during the Viking mission in 1976, but the compound was considered a terrestrial contaminant.

The German-British team of scientists led by Prof. Keppler has investigated whether there could be another explanation for the observations of chloromethane on Mars. They assumed that the gaseous chlorinated organic compound is indeed derived from Martian soil, but that its carbon and hydrogen are provided by meteorites.

To support their hypothesis, the researchers examined samples from a 4.6 billion years old meteorite that fell on earth in 1969 near the Australian city of Murchison. According to Prof. Keppler this meteoritic material contains two per cent carbon. Space experts assume that a relatively large amount of micrometeorites with a similar composition to the one of Murchison fall on the surface of Mars each year.

When Frank Keppler and his colleagues heated the Murchison meteoritic matter in the presence of chlorine they observed chloromethane. “The ratio of heavy to light carbon and hydrogen atoms, known as the isotopic fingerprint of a gas, clearly shows that the organic material has an extraterrestrial origin,” Prof. Keppler says. The scientists transferred their results to Martian surface conditions which receive meteorites of similar composition.

“Hence chloromethane which was found by the two separate Mars missions could be formed by the Martian soil, and the carbon and hydrogen would have their origin in the micrometeorites that rain down on Mars,” explains Prof. Keppler. “However, it cannot be ruled out that microorganisms which might have been living on the planet some time ago might have provided a fraction of the organic matter.”

The Heidelberg scientist assumes that in future Mars missions the isotopic fingerprint of the chloromethane could determine whether its origin is from organic material that is indigenous to Mars, was deposited by meteorites or is contamination from the landers sent from Earth.

Frank Keppler leads the Biogeochemistry working group at Heidelberg University's Institute of Earth Sciences. In addition to scientists from Heidelberg, experts from the Max Planck Institute of Chemistry in Mainz and the School of Biological Sciences at Queen‘s University in Belfast contributed to this research.

Original publication:
F. Keppler, D.B. Harper, M. Greule, U. Ott, T. Sattler, G.F. Schöler & J.T.G. Hamilton: Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Scientific Reports 4 : 7010 (13 November 2014), doi: 10.1038/srep0701

Contact:
Prof. Dr. Frank Keppler
Institute of Earth Sciences
Phone +49 (0) 6221 54-6009
frank.keppler@geow.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de


Weitere Informationen:

http://www.uni-heidelberg.de/fakultaeten/chemgeo/geow/researchgroups/keppler/index.html

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>