Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is There Life On Mars?

20.06.2016

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium survives this procedure, is a scientifically interesting question.


Methanosarcina soligelidi SMA-21, isolated from a Siberian permafrost soil is a survival specialist. Due to its specific metabolism and high resistance to hostile conditions this organism is considered as a model for possible life on Mars. (Photo: Dirk Wagner, GFZ).

On June 18, 2106, the space experiment BIOMEX (Biology and Mars experiment) was brought from the International Space Station (ISS) back to Earth by the cosmonauts Tim Peake, Yury Malenchenko and Tim Kopra within their Soyuz-Capsule.

In the framework of the BIOMEX project, which is coordinated by Dr. Jean-Pierre de Vera from the German Aerospace Center (DLR), microorganisms isolated from Siberian permafrost were among others exposed to Mars-like conditions in space for 18 months.

„Is there life on Mars?“ This question raised by the pop artist David Bowie and addressing life on our neighboring planet remains unanswered until today. It is no doubt that the molecular building blocks of life are available in the universe and that early Mars, as a planet with moderate climate conditions, offered the potential that life developed also on our neighboring planet.

To learn more about the possible life on Mars, Prof. Dirk Wagner and his team from the German Research Centre for Geosciences GFZ (Section 5.3 Geomicrobiology), have done numerous experiments with the microorganism Methanosarcina soligelidi SMA-21 - a methane producing archaeon isolated from Siberian permafrost.

The survivability of this microorganism was tested under extreme environmental conditions such as extremely low temperatures, high salinity, dehydration and radiation. This primordial bacterium has been found to be extremely resistant to the conditions tested. Due to the specific metabolism of Methanosarcina soligelidi and its high resistance to hostile conditions, this organism is considered as a model for possible life on Mars.

In order to test the survivability under Mars-like conditions, microorganisms along with other "candidates" were kept in the experimental module EXPOSE-R2 being exposed to the outside of the ISS for 18 months. GFZ scientist Dirk Wagner: "During this experiment, the microorganisms were kept on Mars-like minerals and exposed to a Martian atmosphere and the radiation conditions that prevail on Mars. The aim of the experiment is to test the long-term survival of Methanosarcina soligelidi under these conditions."

Today the test-organisms returned from the ISS to their home planet, and will be thoroughly analyzed in the coming weeks at the GFZ German Research Centre for Geosciences in Potsdam, Germany. Even if the organisms should not have survived the exposure to a Mars-like environment, the remaining cell components will be examined in detail.

These data will then be integrated into a biosignature database that is created in the framework of the BIOMEX project. The obtained information can be used in future missions to search for traces of life on Mars or elsewhere in the universe.

Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Further information:
http://www.gfz-potsdam.de/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>