Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the Flame Retardant, Tetrabromobisphenol A (TBBPA), a Reproductive or Developmental Toxicant?

19.02.2015

A Reproductive, Developmental and Neurobehavioral Study Following Oral Exposure of Tetrabromobisphenol A in Sprague-Dawley Rats

Tetrabromobisphenol A, or TBBPA, is a useful flame retardant used in a variety of consumer products, including electrical equipment and household furniture.


Chemical Formula for TBBPA used in Electrical Circuit Boards

Organobromide flame retardants such as TBBPA are widely used due to their efficacy and in order to meet fire safety standards for products on the market, but concerns have been raised due to TBBPA's ability to leach into the environment and produce adverse effects on human health and ecosystems overall (Decherf and Demeneix, 2011).

TBBPA has been shown in vitro to bind to estrogen hormone receptors at high concentrations (Gosavi et al., 2013) and cause other effects on hormone sensitive parameters (Decherf and Demeneix, 2011). In 2004, TBBPA had an annual global production of more than 170 kilotons, though only 20-30% of the total volume produced was used as an additive flame retardant on material subject to environmental leaching (ECB, 2006).

Though the live animal toxicity database on TBBPA does not suggest that this flame retardant has any substantial impact on systemic effects, including endocrine function, the potential effects of TBBPA on developmental and reproductive functions have not been examined.

This recent article submitted to the journal Toxicology by Cope et al. (2015) studies the influence of TBBPA on reproductive and developmental parameters in Sprague-Dawley rats exposed orally at doses up to 1000 mg/kg of body weight daily in two separate, unpublished developmental and multi-generational studies, also examining endocrine function and behavioral, neurological and neuropathic functions in the offspring.

TBBPA was not found to be a developmental toxicant in rats, showing no signs of adult maternal toxicity or overt teratogenicity. Results from the multigenerational study showed a sole histopathologic alteration in the F2 generation with a thinning of the brain parietal cortex, though this was considered reversible and interpreted with caution, due to no other neurodevelopmental or neurofunctional deficits being noted.

Decreases in serum T4 in the thyroid were found with absences of concurrent changes in other thyroid hormones, such as T3 and TSH, leading the authors to conclude that this pattern of change has been seen with other xenobiotics in rodents and has not yet been seen in humans. The authors suggest that this is possibly due to a protein chaperone, thyroxine binding globulin or TBG, not found in rats and thus allowing humans to be more resistant to the effects of TBBPA on T4. No other effects were noted for TBBPA in the multi-generational study.

Contact Information
Patricia Nance
Science Outreach & Initiatives Leader
nance@tera.org
Phone: 513-542-7475 x25

Patricia Nance | newswise
Further information:
http://www.tera.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>