Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the Flame Retardant, Tetrabromobisphenol A (TBBPA), a Reproductive or Developmental Toxicant?

19.02.2015

A Reproductive, Developmental and Neurobehavioral Study Following Oral Exposure of Tetrabromobisphenol A in Sprague-Dawley Rats

Tetrabromobisphenol A, or TBBPA, is a useful flame retardant used in a variety of consumer products, including electrical equipment and household furniture.


Chemical Formula for TBBPA used in Electrical Circuit Boards

Organobromide flame retardants such as TBBPA are widely used due to their efficacy and in order to meet fire safety standards for products on the market, but concerns have been raised due to TBBPA's ability to leach into the environment and produce adverse effects on human health and ecosystems overall (Decherf and Demeneix, 2011).

TBBPA has been shown in vitro to bind to estrogen hormone receptors at high concentrations (Gosavi et al., 2013) and cause other effects on hormone sensitive parameters (Decherf and Demeneix, 2011). In 2004, TBBPA had an annual global production of more than 170 kilotons, though only 20-30% of the total volume produced was used as an additive flame retardant on material subject to environmental leaching (ECB, 2006).

Though the live animal toxicity database on TBBPA does not suggest that this flame retardant has any substantial impact on systemic effects, including endocrine function, the potential effects of TBBPA on developmental and reproductive functions have not been examined.

This recent article submitted to the journal Toxicology by Cope et al. (2015) studies the influence of TBBPA on reproductive and developmental parameters in Sprague-Dawley rats exposed orally at doses up to 1000 mg/kg of body weight daily in two separate, unpublished developmental and multi-generational studies, also examining endocrine function and behavioral, neurological and neuropathic functions in the offspring.

TBBPA was not found to be a developmental toxicant in rats, showing no signs of adult maternal toxicity or overt teratogenicity. Results from the multigenerational study showed a sole histopathologic alteration in the F2 generation with a thinning of the brain parietal cortex, though this was considered reversible and interpreted with caution, due to no other neurodevelopmental or neurofunctional deficits being noted.

Decreases in serum T4 in the thyroid were found with absences of concurrent changes in other thyroid hormones, such as T3 and TSH, leading the authors to conclude that this pattern of change has been seen with other xenobiotics in rodents and has not yet been seen in humans. The authors suggest that this is possibly due to a protein chaperone, thyroxine binding globulin or TBG, not found in rats and thus allowing humans to be more resistant to the effects of TBBPA on T4. No other effects were noted for TBBPA in the multi-generational study.

Contact Information
Patricia Nance
Science Outreach & Initiatives Leader
nance@tera.org
Phone: 513-542-7475 x25

Patricia Nance | newswise
Further information:
http://www.tera.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>