Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the Flame Retardant, Tetrabromobisphenol A (TBBPA), a Reproductive or Developmental Toxicant?

19.02.2015

A Reproductive, Developmental and Neurobehavioral Study Following Oral Exposure of Tetrabromobisphenol A in Sprague-Dawley Rats

Tetrabromobisphenol A, or TBBPA, is a useful flame retardant used in a variety of consumer products, including electrical equipment and household furniture.


Chemical Formula for TBBPA used in Electrical Circuit Boards

Organobromide flame retardants such as TBBPA are widely used due to their efficacy and in order to meet fire safety standards for products on the market, but concerns have been raised due to TBBPA's ability to leach into the environment and produce adverse effects on human health and ecosystems overall (Decherf and Demeneix, 2011).

TBBPA has been shown in vitro to bind to estrogen hormone receptors at high concentrations (Gosavi et al., 2013) and cause other effects on hormone sensitive parameters (Decherf and Demeneix, 2011). In 2004, TBBPA had an annual global production of more than 170 kilotons, though only 20-30% of the total volume produced was used as an additive flame retardant on material subject to environmental leaching (ECB, 2006).

Though the live animal toxicity database on TBBPA does not suggest that this flame retardant has any substantial impact on systemic effects, including endocrine function, the potential effects of TBBPA on developmental and reproductive functions have not been examined.

This recent article submitted to the journal Toxicology by Cope et al. (2015) studies the influence of TBBPA on reproductive and developmental parameters in Sprague-Dawley rats exposed orally at doses up to 1000 mg/kg of body weight daily in two separate, unpublished developmental and multi-generational studies, also examining endocrine function and behavioral, neurological and neuropathic functions in the offspring.

TBBPA was not found to be a developmental toxicant in rats, showing no signs of adult maternal toxicity or overt teratogenicity. Results from the multigenerational study showed a sole histopathologic alteration in the F2 generation with a thinning of the brain parietal cortex, though this was considered reversible and interpreted with caution, due to no other neurodevelopmental or neurofunctional deficits being noted.

Decreases in serum T4 in the thyroid were found with absences of concurrent changes in other thyroid hormones, such as T3 and TSH, leading the authors to conclude that this pattern of change has been seen with other xenobiotics in rodents and has not yet been seen in humans. The authors suggest that this is possibly due to a protein chaperone, thyroxine binding globulin or TBG, not found in rats and thus allowing humans to be more resistant to the effects of TBBPA on T4. No other effects were noted for TBBPA in the multi-generational study.

Contact Information
Patricia Nance
Science Outreach & Initiatives Leader
nance@tera.org
Phone: 513-542-7475 x25

Patricia Nance | newswise
Further information:
http://www.tera.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>