Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is a small artificially composed virus fragment the key to a Chikungunya vaccine?

24.04.2015

The mosquito transmitted Chikungunya virus, which causes Chikungunya fever, is spreading continuously. No vaccine is so far available. Researchers of the Paul-Ehrlich-Institut have experimentally recombined segments of the virus surface protein E2, thus creating artificial proteins. The domain generated that way – "sAB+" – was able to confer a protective effect against Chikungunya virus to the animal. An immunization by means of this small protein fragment could thus provide a suitable approach to developing a Chikungunya vaccine. PLoS Neglected Tropical Diseases reports on the research results in its online edition of 23 April 2015 in the evening.

The Chikungunya virus (CHIKV) is transmitted by Aedes mosquitoes and causes an infection in humans known as Chikungunya fever. CHIKV occurs in the tropical and subtropical parts of the world. Regions where it has already caused epidemics include Africa, territories around the Indian Ocean, Southeast Asia, and meanwhile also the Caribbean, Central America, and South America.


Three dimensional structure of the Chikungunya virus envelope protein E2. Areas marked in red were used for the approaches to a vaccine.

www.rcsb.org/pdb/explore/explore.do?structureId=3N44

Around 1.2 million people are estimated to be infected so far during an epidemic in America. Since the Aedes albopictus mosquito, also known as Asian tiger mosquito, has now reached southern Europe and the USA, we are faced with further spreading of the virus. The Paul-Ehrlich-Institut has issued the regulation in 2007 that after returning from an endemic area, blood donors must be deferred from donating blood for at least two weeks to prevent an infection via the blood stream.

The disease is characterized by fever and severe joint pain, hence its name, which means "that which bends up". In 30 to 40 percent of the cases, these joint pains can last several months or even up to several years.

Attempts at developing suitable vaccines have up to now been unsuccessful. To develop an effective vaccine, it is imperative to identify a suitable antigen structure of the virus which will create an effective immune response in humans. Previous approaches have used the entire E2 surface protein as a basis for the vaccine, partly in combination with other virus proteins. These proteins, however, have a relatively large structure, which would make commercial vaccine production difficult.

Professor Barbara Schnierle, head of the section "AIDS, New and Emerging Pathogens" of the division Virology at the Paul-Ehrlich-Institut and her team have investigated whether smaller more specific and less complex-to-be produced parts of E2 would suffice for conferring a protective immune response. Based on the three-dimensional structure of the protein, the researchers of the PEI selected different areas exposed on the surface to join them together, thus creating several artificial protein fragments.

After production in E. coli and purification, mice were immunized with these protein fragments, and their blood was examined for neutralizing antibodies later on. In this experiment, one fragment, described as sAB+, proved to be the most effective one to induce neutralizing antibodies. It was used to immunize mice which were then infected by the wild-type Chikungunya virus.

Compared with non-vaccinated animals, the mice treated showed significantly less virus RNA in the blood – a sign of partial immune protection. ""Our research work shows that single and artificially composed fragments of the Chikungunya virus surface protein may suffice to induce a partially protective immune response. We consider our vaccine approach as promising for further development"", said Professor Schnierle in her explanation of the research results.

Original publication
Weber C, Büchner SM, Schnierle BS (2015):
A Small Antigenic Determinant of the Chikungunya Virus E2 Protein Is Sufficient to Induce Neutralizing Antibodies which Are Partially Protective in Mice.
PLoS Negl Trop Dis 9: e0003684.
DOI:10.1371/journal.pntd.0003684

The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003684 - Online Version of the Publication

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>