Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron regulators join war on pathogens

17.07.2015

Proteins responsible for controlling levels of iron in the body also play an important role in combatting infection, according to a study published today in Cell Host & Microbe.

Humans - along with all living organisms, including pathogens - need iron to survive: invading organisms try to highjack it from their hosts in order to thrive and multiply. Researchers at EMBL Heidelberg, and their colleagues, have now discovered that proteins responsible for helping the body maintain the correct levels of iron at a cellular level are also involved in helping to prevent this theft. These proteins form a system called IRP/IRE (iron regulatory protein/iron responsive element).


Fluorescence microscopy picture of bone marrow-derived macrophages: red: macrophage marker/ blue: DNA /green: ferritin. Compared to the few control cells present in this picture, IRP-null macrophages express abnormally high levels of ferritin (green), which constitutes a pool of iron Salmonella can exploit.

Credit: Bruno Galy/DKFZ

"The work we've been doing has uncovered a connection between two very important functions that are typically seen as separate: the body's innate immune system, and its iron metabolism," explains Matthias Hentze, co-author of the paper and Director of EMBL.

The team analysed how mice reacted to an infection by the Salmonella bacteria, depending on whether they had a functional IRP/IRE system or not. Mice lacking a functional IRP/IRE system from professional immune cells called macrophages did well as long as they were not infected, but when the Salmonella bacteria were introduced, they died. This showed that the iron regulatory system was crucial for the macrophages, the target-cells for this specific pathogen, to fight off the infection effectively.

"Withholding iron from an invading pathogen is an innate defence against infection," explains Bruno Galy, former Staff Scientist at EMBL-Heidelberg and currently group leader at the German Cancer Research Centre (DKFZ). "Our study reveals that the IRP/IRE system plays an important role in this defence."

The precise mechanisms through which the IRP/IRE system works in the macrophages will need further investigation, although the researchers have a number of theories.

One theory is that the IRP proteins help the macrophages produce a molecule called lipocalin 2, which is known to block bacteria from taking up iron from its host. Another idea is that the IRP/IRE system represses the expression of a protein called ferritin. Ferritin is present in cells as a kind of compartment to store iron until it is needed. Invading bacteria get access to these iron supplies and if the IRP proteins are not present, the cell will store much more iron than required - thus providing valuable nutrients for invaders.

The group now plan to carry out further investigations to find out if the IRP/IRE system is also important for other types of bacteria, and other types of infection, such as viruses or parasites. They also hope to discover if the IRP/IRE system has a role to play in other types of immune response, such as inflammation. This immune response is implicated in the progress of human diseases such as cancer or atherosclerosis so a better understanding of its mechanisms could have implications for research into new treatments.

The research was carried out in partnership with Guenter Weiss and colleagues at the Medical University of Innsbruck and Ferric Fang at the University of Washington.

Media Contact

Isabelle Kling
isabelle.kling@embl.de
49-622-138-78355

 @EMBLorg

http://www.embl.org 

Isabelle Kling | European Molecular Biology Laboratory

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>