Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron: A biological element?

26.06.2015

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

That's the upshot of a study published this week in the Proceedings of the National Academy of Sciences (PNAS). The findings have meaning for fields as diverse as mining and the search for life in space.


By studying iron extracted from cores drilled in rocks similar to these in Karijini National Park, Western Australia, UW-Madison researchers determined that half of the iron atoms had originated in shallow oceans after being processed by microbes 2.5 billion years ago.

Courtesy of Clark Johnson

Clark Johnson, a professor of geoscience at the University of Wisconsin-Madison, and former postdoctoral researcher Weiqiang Li examined samples from the banded iron formation in Western Australia. Banded iron is the iron-rich rock found in ore deposits worldwide, from the proposed iron mine in Northern Wisconsin to the enormous mines of Western Australia.

These ancient deposits, up to 150 meters deep, were begging for explanation, says Johnson.

Scientists thought the iron had entered the ocean from hot, mineral-rich water released at mid-ocean vents that then precipitated to the ocean floor. Now Johnson and Li, who is currently at Nanjing University in China, show that half of the iron in banded iron was metabolized by ancient bacteria living along the continental shelves.

The banding was thought to represent some sort of seasonal changes. The UW-Madison researchers found long-term swings in the composition, but not variations on shorter periods like decades or centuries.

The study began with precise measurements of isotopes of iron and neodymium using one of the world's fastest lasers, housed in the UW-Madison geoscience department. (Isotopes, forms of an atom that differ only by weight, are often used to "fingerprint" the source of various samples.)

Bursts of light less than one-trillionth of a second long vaporized thin sections of the sample without heating the sample itself. "It's like taking an ice cream scoop and quickly pulling out material before it gets heated," Johnson explains.

"Heating with traditional lasers gave spurious results."

It took three years to perfect the working of the laser and associated mass spectrometry instruments, Li says.

Previous probes of the source of banded iron had focused on iron isotopes. "There has been debate about what the iron isotopes were telling us about the source," Li says. "Adding neodymium changed that picture and gave us an independent measure of the amount coming from shallow continental waters that carried an isotopic signature of life."

The idea that an organism could metabolize iron may seem strange today, but Earth was very different 2.5 billion years ago. With little oxygen in the atmosphere, many organisms derived energy by metabolizing iron instead of oxygen.

Biologists say this process "is really deep in the tree of life, but we've had little evidence from the rock record until now," Johnson says. "These ancient microbes were respiring iron just like we respire oxygen. It's a hard thing to wrap your head around, I admit."

The current study is important in several ways, Johnson says. "If you are an exploration geologist, you want to know the source of the minerals so you know where to explore."

The research also clarifies the evolution of our planet -- and of life itself -- during the "iron-rich" era 2.5 billion years ago. "What vestiges of the iron-rich world remain in our metabolism?" Johnson asks. "It's no accident that iron is an important part of life, that early biological molecules may have been iron-based."

NASA has made the search for life in space a major focus and sponsors the UW-Madison Astrobiology Institute, which Johnson directs. Recognizing unfamiliar forms of life is a priority for the space agency.

The study reinforces the importance of microbes in geology. "This represents a huge change," Johnson says. "In my introductory geochemistry textbook from 1980, there is no mention of biology, and so every diagram showing what minerals are stable at what conditions on the surface of the Earth is absolutely wrong."

Research results like these affect how classes are taught, Johnson says. "If I only taught the same thing, I would be teaching things that are absolutely wrong. If you ever wonder why we combine teaching and research at this university, geomicrobiology gives you the answer. It has completely turned geoscience on its ear."

Contact:

David Tenenbaum
djtenenb@wisc.edu
608-265-8549

Clark Johnson
clarkj@geology.wisc.edu (preference)
608-262-1710

http://www.wisc.edu 

Clark Johnson | EurekAlert!

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>