Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron: A biological element?

26.06.2015

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

That's the upshot of a study published this week in the Proceedings of the National Academy of Sciences (PNAS). The findings have meaning for fields as diverse as mining and the search for life in space.


By studying iron extracted from cores drilled in rocks similar to these in Karijini National Park, Western Australia, UW-Madison researchers determined that half of the iron atoms had originated in shallow oceans after being processed by microbes 2.5 billion years ago.

Courtesy of Clark Johnson

Clark Johnson, a professor of geoscience at the University of Wisconsin-Madison, and former postdoctoral researcher Weiqiang Li examined samples from the banded iron formation in Western Australia. Banded iron is the iron-rich rock found in ore deposits worldwide, from the proposed iron mine in Northern Wisconsin to the enormous mines of Western Australia.

These ancient deposits, up to 150 meters deep, were begging for explanation, says Johnson.

Scientists thought the iron had entered the ocean from hot, mineral-rich water released at mid-ocean vents that then precipitated to the ocean floor. Now Johnson and Li, who is currently at Nanjing University in China, show that half of the iron in banded iron was metabolized by ancient bacteria living along the continental shelves.

The banding was thought to represent some sort of seasonal changes. The UW-Madison researchers found long-term swings in the composition, but not variations on shorter periods like decades or centuries.

The study began with precise measurements of isotopes of iron and neodymium using one of the world's fastest lasers, housed in the UW-Madison geoscience department. (Isotopes, forms of an atom that differ only by weight, are often used to "fingerprint" the source of various samples.)

Bursts of light less than one-trillionth of a second long vaporized thin sections of the sample without heating the sample itself. "It's like taking an ice cream scoop and quickly pulling out material before it gets heated," Johnson explains.

"Heating with traditional lasers gave spurious results."

It took three years to perfect the working of the laser and associated mass spectrometry instruments, Li says.

Previous probes of the source of banded iron had focused on iron isotopes. "There has been debate about what the iron isotopes were telling us about the source," Li says. "Adding neodymium changed that picture and gave us an independent measure of the amount coming from shallow continental waters that carried an isotopic signature of life."

The idea that an organism could metabolize iron may seem strange today, but Earth was very different 2.5 billion years ago. With little oxygen in the atmosphere, many organisms derived energy by metabolizing iron instead of oxygen.

Biologists say this process "is really deep in the tree of life, but we've had little evidence from the rock record until now," Johnson says. "These ancient microbes were respiring iron just like we respire oxygen. It's a hard thing to wrap your head around, I admit."

The current study is important in several ways, Johnson says. "If you are an exploration geologist, you want to know the source of the minerals so you know where to explore."

The research also clarifies the evolution of our planet -- and of life itself -- during the "iron-rich" era 2.5 billion years ago. "What vestiges of the iron-rich world remain in our metabolism?" Johnson asks. "It's no accident that iron is an important part of life, that early biological molecules may have been iron-based."

NASA has made the search for life in space a major focus and sponsors the UW-Madison Astrobiology Institute, which Johnson directs. Recognizing unfamiliar forms of life is a priority for the space agency.

The study reinforces the importance of microbes in geology. "This represents a huge change," Johnson says. "In my introductory geochemistry textbook from 1980, there is no mention of biology, and so every diagram showing what minerals are stable at what conditions on the surface of the Earth is absolutely wrong."

Research results like these affect how classes are taught, Johnson says. "If I only taught the same thing, I would be teaching things that are absolutely wrong. If you ever wonder why we combine teaching and research at this university, geomicrobiology gives you the answer. It has completely turned geoscience on its ear."

Contact:

David Tenenbaum
djtenenb@wisc.edu
608-265-8549

Clark Johnson
clarkj@geology.wisc.edu (preference)
608-262-1710

http://www.wisc.edu 

Clark Johnson | EurekAlert!

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>