Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017

Introduction of a novel, easy-to-use and highly reproducible culture system for in vitro analyses of zebrafish oligodendrocyte progenitor cells (OPCs)

Dr. Michell M. Reimer, group leader at the Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at the TU Dresden, and his team introduce a novel, easy-to-use, and highly reproducible OPC culture platform for adult zebrafish cells.


Dr. Michell M. Reimer

© CRTD


Main steps to obtain a highly pure adult zebrafish spinal oligodendrocyte progenitor cell (OPC) population

2017 Kroehne, Tsata, Marrone, Froeb, Reinhardt, Gompf, Dahl, Sterneckert and Reimer

This system will help to unravel the molecular and cellular programs that enable zebrafish to functionally regenerate spinal cord injuries. The results of this study have been published in the scientific journal Frontiers in Cellular Neuroscience.

Spinal cord injuries result from a blunt or penetrating trauma. This is generally caused by accidents that occur during sport activities or when driving. Injuries of the spinal cord can lead to extreme pain (e.g. pressure in the head, neck or back), the loss of sensation (e.g. in fingers or feet), the loss of control over different parts of the body, an abnormal sense of balance and many other symptoms.

According to the World Health Organization (WHO)*, as many as 500,000 people suffer from spinal cord injuries each year*. Humans do not regain spinal cord function after injury. However, zebrafish have the remarkable ability to functionally recover from spinal cord injury. They repair injured connections, replace damaged motor neurons and oligodendrocytes, enabling them to regain full movement within six weeks after injury.

The study introduced here focused on a population of support cells in the spinal cord that helps to protect surviving nerve cells (neurons) after injury: oligodendrocytes and their precursor cells. Oligodendrocytes, the cells that are known to produce the myelin sheaths which enable saltatory conduction of action potentials along the myelinated axons, are modulators of signal transmission along neuronal connections (axons) and also promote neuronal survival by providing metabolic support.

Oligodendrocyte death, occurring after a spinal cord injury, activates a process called de-myelination that results first in damage to surviving neuronal connections and finally in death of the affected neurons. Although lost mature oligodendrocytes can principally be replaced by resident oligodendrocyte progenitor cells (OPCs) this does not happen sufficiently enough in the human spinal cord after injury. Improving recruitment, activation and differentiation of OPCs is therefore hypothesised to improve functional outcome after a spinal cord injury in humans.

Here Dr. Reimer and his team asked the question, ‘what happens to mature oligodendrocytes after a spinal cord injury in adult zebrafish?’. They found that, like in humans, oligodendrocytes near a spinal cord injury site are massively lost within a week. However, two weeks after injury they found that the oligodendrocyte population was largely re-established, showing the remarkable regenerative capacity of the adult zebrafish spinal cord.

These results placed the resident OPC population in the focus of interest: what are the signals that control and enable the activation of these precursor cells in the adult zebrafish spinal cord? Dr. Reimer and his team decided to establish a novel in vitro platform to analyse zebrafish OPCs independently of the body, as this enables better control over the cells and opens up the possibility for novel methods of analysis. They developed a streamlined and fast, though inexpensive, method that allows direct access to a pure and vital population of zebrafish OPCs in less than 2 hours.

This simple protocol is based on automated fluorescent activated cell sorting (FACS) of OPCs. Using novel culture conditions Dr. Reimer’s team has shown it is now possible to maintain the cells for 16 days in vitro. Finally, they demonstrated that zebrafish OPCs differentiate into mature oligodendrocytes when cultured together with human motor neurons, differentiated from induced pluripotent stem cells. This shows that the basic mechanisms of oligodendrocyte differentiation are conserved across species and that understanding the regulation of zebrafish OPCs can contribute to the development of new treatment for human diseases.

As a next step, Dr. Reimer’s research team intend to analyse the effect of different drugs on zebrafish OPCs in order to potentially identify a method to improve functional spinal cord repair in humans.

Before becoming a research group leader at the CRTD in 2014 (for Regulation of developmental and regenerative processes in the spinal cord), the biologist Michell Reimer worked as a Post-Doctoral Fellow at the Centre for Neuroregeneration and the Centre for Cognitive and Neural Systems at the University of Edinburgh (UK) since 2009. From 2005-2008, Michell Reimer completed his PhD in the field of neuroscience at the Centre for Neuroscience Research, University of Edinburgh.

*http://www.who.int/mediacentre/news/releases/2013/spinal-cord-injury-20131202/en...

Publication
Title: Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation In Vitro
Kroehne V., Tsata V., Marrone L., Fröb C., Reinhardt S., Gompf A., Dahl A., Sterneckert J. Reimer M.M.

DOI: 10.3389/fncel.2017.00284

Website
http://www.crt-dresden.de/research/research-groups/core-groups/crtd-core-groups/...

Press Contact
Franziska Clauß, M.A.
Press Officer
Phone: +49 351 458 82065
E-Mail: franziska.clauss@tu-dresden.de

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Researchers identify hormone for treating sepsis
14.11.2017 | University of California - Riverside

nachricht Bright and shining molecules for OLEDs and new drugs
14.11.2017 | Ural Federal University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Essential quantum computer component downsized by two orders of magnitude

14.11.2017 | Physics and Astronomy

Fuel cell X-ray study details effects of temperature and moisture on performance

14.11.2017 | Materials Sciences

Digital length gauges by WayCon - extremely accurate and versatile

14.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>