Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insects passed 'the Turing Test'

22.09.2015

Russian scientists have confirmed the Turing reaction-diffusion model

In 1952, the legendary British mathematician and cryptographer Alan Turing proposed a model, which assumes formation of complex patterns through chemical interaction of two diffusing reagents. Russian scientists managed to prove that the corneal surface nanopatterns in 23 insect orders completely fit into this model.


The diversity of corneal nanostructural patterns among arthropod groups: (AandB) Corneal nanostructures of Trichoptera. Merged as well as undersized nipples in an irregular nipple array of the Phryganeidaefamily (A) and maze-like nanocoating of the Limnephilidae family (B). (C) Clearly expressed parallel strands in a true spider. (D) Dimpled nanopattern of an earwig (Dermaptera). (E) Nipples merging into maze on stonefly (Plecoptera) corneae. (FandG) Merging of individual Dipteran nipples into parallel strands and mazes: full merging of nipples into strands and mazes on the entire corneal surface in Tabanidae (F); partial merging of nipples in the center of Tipulidae cornea into elongated protrusions and then complete fusion into an array of parallel strands near the ommatidial edge (G). (H) Merging of individual burrows and dimples into a maze-like structure on bumblebee (Apidae, Hymenoptera) corneae. All image dimensions are 5×5μm, except forH, which is 3×3μm. Surface height in nanometers is indicated by the color scale shown next to 2-D images.

Credit: Artem Blagodatsky et al

Their work is published in the Proceedings of the National Academy of Sciences: http://www.pnas.org/cgi/doi/10.1073/pnas.1505748112.

The work was done by a team working in the Institute of Protein Research of the Russian Academy of Sciences, (Pushchino, Russia) and the Department of Entomology at the Faculty of Biology of the Lomonosov Moscow State University. It was supervised by Professor Vladimir Katanaev, who also leads a lab in the University of Lausanne, Switzerland. Artem Blagodatskiy and Mikhail Kryuchkov performed the choice and preparation of insect corneal samples and analyzed the data. Yulia Lopatina from the Lomonosov Moscow State University played the role of expert entomologist, while Anton Sergeev performed the atomic force microscopy.

The initial goal of the study was to characterize the antireflective three-dimensional nanopatterns covering insect eye cornea, with respect to the taxonomy of studied insects and to get insight into their possible evolution path.

The result was surprising as the pattern morphology did not correlate with insect position on the evolutionary tree. Instead, Russian scientists have characterized four main morphological corneal nanopatterns as well as transition forms between them, omnipresent among the insect class. Another finding was that all the possible forms of the patterns directly matched to the array of patterns predicted by the famous Turing reaction-diffusion model published in 1952, what Russian scientists confirmed not by mere observation, but by mathematical modeling as well. The model assumes formation of complex patterns through chemical interaction of two diffusing reagents.

The analysis of corneal surface nanopatterns in 23 insect orders has been performed by means of atomic force microscopy with resolution up to single nanometers.

"This method allowed us to drastically expand the previously available data, acquired through scanning electron microscopy; it also made possible to characterize surface patterns directly, not based upon analysis of metal replicas. When possible, we always examined corneae belonging to distinct families of one order to get insight into intra-order pattern diversity", -- Artem Blagodatskiy says,

The main implication of the work is the understanding of the mechanisms underlying the formation of biological three-dimensional nano-patterns, demonstrating the first example of Turing reaction-diffusion model acting in the bio-nanoworld.

Interestingly, the Turing nanopatterning mechanism is common not only for the insect class, but also for spiders, scorpions and centipedes in other words - universal for arthropods. Due to the antireflective properties of insect corneal nanocoatings, the revealed mechanisms are paving the way for design of artificial antireflective nanosurfaces.

"A promising future development of the project is planned to be a genetic analysis of corneal nanopattern formation on platform of a well studied Drosophila melanogaster (fruitfly) model. The wild-type fruitflies possess a nipple array type nanocoating on their eyes", -- Artem Blagodatskiy summarized.

Different combinations of overexpressed and underexpressed proteins known to be responsible for corneal development in Drosophila may alter the nipple pattern to another pattern type and thus shed the light on chemical nature of compounds, forming the Turing-type structures upon insect eyes. Revealing of proteins and\or other agents responsible for nanopattern formation will be a direct clue to artificial design of nanocoatings with desired properties. Another direction of project development will be the comparison of antireflective features of different types of characterized nanocoatings.

Media Contact

Vladimir Koryagin
science-release@rector.msu.ru

http://www.msu.ru 

Vladimir Koryagin | EurekAlert!

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>