Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insect mating behavior has lessons for drones

01.06.2015

UC Riverside-led study used a computer model to simulate observed behavior in moths

Male moths locate females by navigating along the latter's pheromone (odor) plume, often flying hundreds of meters to do so. Two strategies are involved to accomplish this: males must find the outer envelope of the pheromone plume, and then head upwind.


Ring Cardé, a distinguished professor of entomology at UC Riverside, is seen here working on an experiment involving a wind tunnel.

Credit: Carrie Rosema

Can understanding such insect behavior be useful for robotics research? Yes, according to two entomologists whose research using computer simulations shows that such insect behavior has implications for airborne robots (drones) that ply the sky searching for signature odors.

The entomologists modeled plumes' dispersal and insects' flight strategies. Their model was based in part on the observed behavior of the gypsy moth in forests and in experiments in wind tunnels. The use of computer simulations allowed testing of many conditions that could not be observed directly in the field.

The simulations suggest that optimal strategies for robotic vehicles - airborne or ground-based - programmed to contact an odor plume need not involve the detection of wind flow in setting a foraging path.

"Our simulations shows that random walks - heading randomly with respect to wind and changing direction periodically - create the most efficient paths for the initial discovery of the plume and consequently the likelihood of the moth locating its source," said Ring Cardé, a distinguished professor of entomology at the University of California, Riverside, whose lab led the research. "Such strategies are most apt to result in contact with plumes. This conclusion matches our previous field observations of moth searching flights and also suggests that previous theoretical studies suggesting specific headings with respect to wind flow, such as a crosswind bias, are not optimal as had been predicted. Our simulations show that paths aimed downwind are least successful."

Cardé explained that in the model once the odor plume is encountered, the virtual moth navigates a course upwind to the odor's source.

"This process is well understood in flying insects such as moths, flies and mosquitoes," he said. "But first the plume must be found and the best rules for an efficient searching strategy - find it quickly with a minimal energy expenditure - had not been established."

One application of the work may be in using airborne drones to find sources of odors from pollutants. Such drones could mimic natural orientation paths of insects searching for odors.

Study results appear online in Integrative and Comparative Biology.

The researchers simulated batches of 100 virtual moths that search simultaneously and independently for an odor plume in a boundless area that replicates natural wind conditions. The model creates a meandering wind direction and the wispy structure of natural odor plumes.

###

The research was supported by the Office of Naval Research. Cardé, who is the A. M. Boyce Chair in the Department of Entomology, was joined in the research by Josep Bau at the University of Vic--Central University of Catalonia, Spain. Bau was a postdoctoral researcher in Cardé's lab.

The plume component in the simulations used by Cardé and Bau relies on a model developed by Jay Farrell, a professor of electrical and computer engineering at UCR.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Media Contact

Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050

 @UCRiverside

http://www.ucr.edu 

Iqbal Pittalwala | EurekAlert!

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>