Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insect mating behavior has lessons for drones

01.06.2015

UC Riverside-led study used a computer model to simulate observed behavior in moths

Male moths locate females by navigating along the latter's pheromone (odor) plume, often flying hundreds of meters to do so. Two strategies are involved to accomplish this: males must find the outer envelope of the pheromone plume, and then head upwind.


Ring Cardé, a distinguished professor of entomology at UC Riverside, is seen here working on an experiment involving a wind tunnel.

Credit: Carrie Rosema

Can understanding such insect behavior be useful for robotics research? Yes, according to two entomologists whose research using computer simulations shows that such insect behavior has implications for airborne robots (drones) that ply the sky searching for signature odors.

The entomologists modeled plumes' dispersal and insects' flight strategies. Their model was based in part on the observed behavior of the gypsy moth in forests and in experiments in wind tunnels. The use of computer simulations allowed testing of many conditions that could not be observed directly in the field.

The simulations suggest that optimal strategies for robotic vehicles - airborne or ground-based - programmed to contact an odor plume need not involve the detection of wind flow in setting a foraging path.

"Our simulations shows that random walks - heading randomly with respect to wind and changing direction periodically - create the most efficient paths for the initial discovery of the plume and consequently the likelihood of the moth locating its source," said Ring Cardé, a distinguished professor of entomology at the University of California, Riverside, whose lab led the research. "Such strategies are most apt to result in contact with plumes. This conclusion matches our previous field observations of moth searching flights and also suggests that previous theoretical studies suggesting specific headings with respect to wind flow, such as a crosswind bias, are not optimal as had been predicted. Our simulations show that paths aimed downwind are least successful."

Cardé explained that in the model once the odor plume is encountered, the virtual moth navigates a course upwind to the odor's source.

"This process is well understood in flying insects such as moths, flies and mosquitoes," he said. "But first the plume must be found and the best rules for an efficient searching strategy - find it quickly with a minimal energy expenditure - had not been established."

One application of the work may be in using airborne drones to find sources of odors from pollutants. Such drones could mimic natural orientation paths of insects searching for odors.

Study results appear online in Integrative and Comparative Biology.

The researchers simulated batches of 100 virtual moths that search simultaneously and independently for an odor plume in a boundless area that replicates natural wind conditions. The model creates a meandering wind direction and the wispy structure of natural odor plumes.

###

The research was supported by the Office of Naval Research. Cardé, who is the A. M. Boyce Chair in the Department of Entomology, was joined in the research by Josep Bau at the University of Vic--Central University of Catalonia, Spain. Bau was a postdoctoral researcher in Cardé's lab.

The plume component in the simulations used by Cardé and Bau relies on a model developed by Jay Farrell, a professor of electrical and computer engineering at UCR.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Media Contact

Iqbal Pittalwala
iqbal@ucr.edu
951-827-6050

 @UCRiverside

http://www.ucr.edu 

Iqbal Pittalwala | EurekAlert!

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>