Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inner Ear Provides Clues to Human Dispersal

04.04.2018

Slight differences can be found in the inner ear of different populations of modern humans. Paleoanthropologists from UZH have found that these differences can provide information about the global dispersal of humans from Africa.

The early migration of humans out of Africa and across the world can be proven using genetic and morphological analyses. However, morphological data from the skull and skeleton often only allow limited conclusions to be drawn about the geographical dispersal pattern, especially because of the many ways in which the human skeleton adapts to local environmental conditions.


Slight differences can be found in the inner ear of different populations of modern humans.

©Marcia Ponce de León, Christoph Zollikofer

Now, an international team of researchers led by paleoanthropologists from the University of Zurich has shown that the morphology of the inner ear is a good indicator for population history and human dispersal.

Differences within a population greater than between populations

The hearing and balance system in humans, as in all vertebrates, is housed in a cavity system in the base of the skull – the bony labyrinth of the inner ear. The researchers analyzed the labyrinth structures in human populations from southern and northern Africa, Europe, Asia, Australia, and America, including as far south as Patagonia, using computed tomography to obtain high-resolution 3-D data of the bony labyrinth.

The data showed that the shape of the labyrinth varied greatly, with the variation within a population being considerably greater that the variation between populations. “This typically human variation pattern is also known from comparative genetic data. It shows that all humans are very closely related and have their roots in Africa,” explains UZH anthropologist Marcia Ponce de León.

Morphology of the labyrinth correlates with dispersal distance from Africa

The team further discovered that the 3-D shape of the labyrinth contained important information about the global dispersal of humans from the African continent. The further away a population is geographically from South Africa, the more the shape of the labyrinth differs from that of the South African population. Moreover, the labyrinth data confirm the findings from DNA analyses which show that the genetic distance increases in correlation with the geographical distance from Africa.

Conclusions about inner-continental dispersal history can be drawn

The labyrinth data also indicate population movements within the continents. For example, the labyrinth shapes of prehistoric populations on the Sunda Islands (Indonesia) are similar to those of the indigenous people of Papua and Australia, while today’s population mainly migrated from the Malay archipelago. On the other hand, the labyrinth data also reveals that today’s Europeans and Japanese mainly have their roots in the respective local populations of the Neolithic Period.

Incidental genetic changes do not have functional effect

The new results are surprising because it was previously assumed that the shape of the labyrinth was mainly determined by its function. It has now been shown that despite the very high functional requirements for balance and hearing, nature tolerates an astonishingly wide variation in the labyrinth structure. “This is probably due to random changes in the genetic material. Such changes may have few or no functional consequences, but the associated structural changes provide a record of human dispersal and evolution history,” summarizes the paper’s last author Christoph Zollikofer, professor of anthropology at UZH.

Computed tomography data should be acquired before DNA extraction

The compact bone that surrounds the labyrinth is also interesting for paleogenetics as it contains a large amount of DNA. This gives rise to an acute conflict of interests: While computed tomographic investigations are non-invasive, the process of DNA collection damages the labyrinth. “Paleogenetics is a rapidly growing research field and hundreds of labyrinths from archaeological skeleton collections have already been milled to dust without first being documented,” says Christoph Zollikofer. The research team therefore wants to ensure that computed tomographic data is routinely obtained before bones are released for DNA extraction. “These data form an invaluable archive of the history of fossil hominid and modern human populations,” concludes Marcia Ponce de León.

Literature:

Marcia S. Ponce de León, Toetik Koesbardiati, John David Weissmann, Marco Milella, Carlos S. Reyna-Blanco, Gen Suwa, Osamu Kondo, Anna-Sapfo Malaspinas, Tim D. White, and Christoph P. E. Zollikofer. Human bony labyrinth is an indicator of population history and dispersal from Africa. PNAS. April 2, 2018. Doi: 10.1073/pnas.1717873115

Contact:
Prof. Christoph Zollikofer
Anthropological Institute and Museum
University of Zurich
Phone +41 44 635 54 27
E-mail: zolli@aim.uzh.ch

Media Relations
University of Zurich
Phone +41 44 634 44 67
E-mail: mediarelations@kommunikation.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2018/Inner-Ear-Provides-Clues-to-Human...

Nathalie Huber | Universität Zürich

Further reports about: DNA DNA extraction UZH human populations inner ear populations skeleton tomography

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>