Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indefatigable Hearing

09.10.2015

A molecular clearance mechanism enables synapses to continously release Transmitter. Auditory neuroscientists discover bottleneck of information flow in the ear and pave the way for gene therapy of deafness. Publication in „EMBO Journal“

Disabling hearing impairment (HI) affects 360 million people worldwide, and prevalence increases with age. So far, no causal treatment is available for its most common form, sensorineural HI. Göttingen and Berlin scientists have achieved a major advance in our understanding of hearing as well as an important step towards developing gene therapy of deafness.


Figure 1: Active zone clearance

After fusion of synaptic vesicles (red spheres) with the plasma membrane, interaction of AP-2 and otoferlin along opposing protein gradients is hypothesized to enable efficient clearance of exocytosed proteolipid from the release site. Copyright: Jung et al., EMBO J 2015


Figure 2: Deafness of AP-2µ mice and restoration of hearing by gene therapy

Transgenic mice lacking AP-2µ in their hair cells are hearing impaired (red). Hearing was restored by virus-mediated gene therapy (blue). Copyright: Tobias Moser, Institute for Auditory Neuroscience, UMG

Their study showed that the endocytic adaptor protein 2µ is required for hearing by fueling vesicle reloading of the release site for indefatigable synaptic transmission. Without AP-2, which inter-acts with the deafness protein otoferlin, a kind of traffic jam occurs at the release sites, suggesting that AP-2 and Otoferlin teamwork in clearing exocytosed material from the release site. Using virus-mediated transfer of the intact AP-2µ DNA into sensory inner hair cells, the scientist could restore normal synaptic function and hearing.

The research was performed by scientists of several research institutions at the Göttingen Campus within the collaborative research center 889 (CRC) “Cellular Mechanisms of Sensory Processing” and by scientists of the Berlin Leibniz-Institute for Molecular Pharmacology. The work was published in the EMBO Journal.

... more about:
»gene therapy »hair cells »protein »traffic jam

Publication
Sangyong Jung#, Tanja Maritzen#, Carolin Wichmann#, Zhizi Jing, Andreas Neef§, Natalia H. Revelo, Hanan Al-Moyed, Sandra Meese, Sonja M. Wojcik, Iliana Panou, Haydar Bulut, Peter Schu, Ralf Ficner, Ellen Reisinger, Silvio O. Rizzoli, Jakob Neef, Nicola Strenzke, Volker Haucke§ and Tobias Moser§ (2015). Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing. EMBO Journal, DOI: 10.15252/embj.201591885, online: Oct 7th, 2015
# gleichwertiger Beitrag zum Artikel
§ korrespondierender Autor

Specialized contact points between sensory hair cells and auditory nerve cells, the socalled “ribbon” synapses, convert acoustic information into a neural code in the inner ear. The rate of synaptic transmission amounts to amazing hundreds per second, requiring a highly efficient and indefatigable recruitment, fusion and recycling of synaptic vesicles at the active zones of transmitter release. This extraordinary performance involves Otoferlin that is defective in sensorineural deafness. However, the underlying interactions of Otoferlin with other proteins of the synapse are not well understood.

Ultrafast replenishment of release sites requires their efficient clearance after fusion
What limits the rate of transmission at the hair cell synapse? How does Otoferlin enable indefatigable transmitter release? Each of the sub-micrometer-sized active zones likely can relase up to approximately 1000 transmitter-filled synaptic vesicles per second. Such high traffic volume causes loads of vesicular proteins and lipid to strand in the membrane of the active zone. It seems that the synapse employs dedicated mechanisms to clear this stranded material from the fusion zone to the clearance zone from which it will be recycled by endocytosis (re-uptake into the cell). Efficient “active zone clearance” is likely important for ultrafast reloading of the release sites (Figure 1). How this works, so far, was unclear.

Using transgenic mouse lines generated in Berlin and Göttingen, scientists now discovered that the adaptor protein AP-2µ, a crucial component of the endocytic machinery, plays an important role in active zone clearance. Mice are deaf when their hair cells lack AP-2µ (Figure 2). Deafness results from slowed vesicle reloading at the release sites of the active zones, as demonstrated by a multidisciplinary approach.

Dr. Carolin Wichmann, group leader at the Institute for Auditory Neuroscience of the University Medical Center Göttingen and one of the first authors, says: „We were surprised, that transmitter release slowed down already at 20 thousandth of a second of stimulation. Previously, AP-2 was reported to primarily work in the slower process of vesicle recycling.“ In order to understand the underlying molecular mechanism, the scientists also studied the interactions of AP-2 and found binding to Otoferlin, a molecule that is defect in human deafness, which also supports vesicle replenishment at the active zone.

Dr. Tanja Maritzen, group leader at the Leibniz-Institute for Molecular Pharmacology, Berlin, and a first author says: „We found AP-2 and Otoferlin to interact at least via two binding sites. Moreover, our experiments revealed that AP-2µ is critical for maintaining normal levels of Otoferlin.“

But how can the interaction of AP-2 and Otoferlin speed vesicle replenishment at the active zone? Dr. Andreas Neef, group leader at the Göttingen Bernstein Center for Computational Neuroscience and MPI for Dynamics and Self-Organisation, a corresponding author states: „Based on combining systems physiological recordings of transmitter release at single active zone, a unique opportunity at these synapses, with mathematical modeling, we postulate that AP-2 speeds clearance of active zones via binding to Otoferlin.“ Thereby, the scientists believe, exocytosed material can be removed more quickly enabling new vesicles to come in and prepare for the next round of transmitter release (Figure 2). Lack of AP-2 or Otoferlin would then cause a “traffic jam” and impair sound encoding: deafness results.

This study is one of the first world-wide that demonstrates the feasibility of using non-pathogenic virus for gene-replacement therapy in animal models. Dr. SangYong Jung, scientist at the Institute for Auditory Neuroscience of the University Medical Center Göttingen and one of the first authors says: „When injecting adeno-associated virus carrying the DNA for AP-2µ into the cochlea of these deaf mice, we could restore the function of the hair cell synapses and hearing.“

The leaders of the study Dr. Volker Haucke (Director of the Leibniz-Institute for Molecular Pharmacology and Professor at the Free University of Berlin) and Dr. Tobias Moser (Director of Institute for Auditory Neuroscience at the University Medical Center Göttingen and Max-Planck-Fellow at the MPIs for Biophysical Chemistry and Experimental Medicine) agree that this study offers an important advance of our understanding of the function of AP-2 in synaptic transmission and, at the same time, paves the way for future gene therapy of deafness.

Haucke: “The high-throughput performance of the auditory system allowed us to better understand the function of AP-2 at the active zone. AP-2 and Otoferlin seem to teamwork in “active zone clearance” in order to realize the spectacular rates of transmission required for hearing”. Moser adds: „While so far we don’t know of a human deafness caused by mutations in AP-2, our study raises hopes that virus-mediated gene therapy can be translated into the clinic in the near future. The near normal hearing after gene therapy of one ear and the lack of virus spread (e.g. to the other ear) indicate that early intervention could restore hearing in select genetic deafness.”


Further information:
Dr. Carolin Wichmann, Dr. SangYong Jung, Prof. Dr. Tobias Moser
Institute for Auditory Neuroscience and InnerEarLab,
University Medical Center, Georg-August-Universität

Dr. Carolin Wichmann
Arbeitsgruppe Molekulare Architektur von Synapsen
Telefon +49 551 / 39-22604, carolin.wichmann@med.uni-goettingen.de

Dr. SangYong Jung, Prof. Dr. Tobias Moser
Institute for Auditory Neuroscience and InnerEarLab
Telefon +49 551 / 39-22803, tmoser@gwdg.de

Dr. Tanja Maritzen, Prof. Dr. Volker Haucke
Leibniz-Institut für Molekulare Pharmakologie(FMP)
Telefon +49-30-94793101, HAUCKE@fmp-berlin.de

Stefan Weller | idw - Informationsdienst Wissenschaft

Further reports about: gene therapy hair cells protein traffic jam

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>