Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased Protein Turnover Contributes to the Development of Pulmonary Fibrosis

27.07.2015

Scientists of the Comprehensive Pneumology Center (CPC) at the Helmholtz Zentrum München have identified a new mechanism which contributes to the development of idiopathic pulmonary fibrosis (IPF). They showed that the pathological changes of lung tissue are accompanied by an increase in protein turnover by the central protein degradation machinery of the cell – the proteasome. Their study has now been published in the ‘American Journal of Respiratory and Critical Care Medicine’.

Idiopathic pulmonary fibrosis is a very aggressive form of pulmonary fibrosis and has a particularly poor prognosis. This fatal disease, for which so far no causal therapies exist, is characterized by a massive deposition of connective and scar tissue in the lung, which leads to a progressive loss of lung function and ultimately death.

Connective tissue is mainly produced by myofibroblasts. The research group led by PD Dr. Silke Meiners of the Institute of Lung Biology and the CPC showed now for the first time that the activation of these myofibroblasts depends on increased protein turnover by the 26S proteasome*.

Inhibition of the proteasome as a possible therapeutic approach

In the recently published study, the Helmholtz scientists were able to demonstrate an activation of the 26S proteasome during the transformation of normal fibroblasts into myofibroblasts both in vitro and in vivo using two different experimental models of pulmonary fibrosis. Moreover, increased protein turnover was also detected in fibrotic lung tissue of IPF patients.

“Conversely, we were able to show that targeted inhibition of the 26S proteasome prevents the differentiation of primary human lung fibroblasts into myofibroblasts, confirming the essential role of enhanced proteasomal protein degradation for this pathological process,” said Silke Meiners.

“Understanding the mechanisms that lead to a disease such as IPF helps us identify innovative approaches that allow therapeutic intervention,” comments Professor Oliver Eickelberg, director of the Institute of Lung Biology and scientific director of the CPC. In further studies, the Helmholtz scientists want to test the therapeutic use of substances which specifically inhibit the 26S proteasome, but do not affect other proteasome complexes in the cell**.

Furthermore, the lung researchers speculate that activation of the 26S proteasome may generally occur in fibrotic diseases, such as heart and kidney fibrosis, since differentiation of fibroblasts into myofibroblasts also is the underlying mechanism for the pathological alterations in these disorders.
Further Information

Background:
* The 26S proteasome is a kind of molecular shredder that breaks down old or defective proteins of the cell into their recyclable components. It consists of a catalytic core, the 20S proteasome, and one or two 19S regulators that bind to both ends of the 20S complex and mediate specific degradation of ubiquitin-tagged proteins. It is assumed that a majority of the proteins in the cell are degraded in this way.

**As shown in the study, by use of siRNA, which targeted a specific, essential subunit of the 19S regulator, the targeted inhibition of the 26S proteasome successfully suppressed a differentiation of fibroblasts into pathological myofibroblasts. This approach is significantly more specific than the use of catalytic proteasome inhibitors, which inhibit all active proteasomes, that is 26S and 20S proteasome complexes, in an entirely non-targeted way. Apart from their use to treat malignant tumor diseases, proteasome inhibitors are controversial because of their toxic side effects.

The specific inhibition of the 26S proteasome here represents a novel and far more specific approach through which unwanted side effects could be reduced, since preferably cells are attacked that show an activation of the system. In further studies, the scientists want to test the therapeutic use of substances that interfere specifically with 26S proteasome activity. These are molecules that prevent the assembly of the high-molecular-weight 26S proteasome from the 20S complex and the 19S regulators. Furthermore, a compound screening is planned for new substances that induce a specific 26S proteasome inhibition.

Original publication:
Semren, N. et al. (2015). Regulation of 26S proteasome activity in pulmonary fibrosis, American Journal of Respiratory and Critical Care Medicine, DOI: 10.1164/rccm.201412-2270OC

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Comprehensive Pneumology Center (CPC) is a joint research project of the Helmholtz Zentrum München, the Ludwig-Maximilians-Universität with its University Hospital and the Asklepios Fachkliniken München-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnosis and therapy strategies. The CPC maintains a focus on experimental pneumology with the investigation of cellular, molecular and immunological mechanisms involved in lung diseases. The CPC is one of five sites of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
PD Dr. Silke Meiners, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Lungenbiologie, Ingolstädter Landstr. 1, 85764 Neuherberg – Phone: +49 89 3187 4673 - E-mail: silke.meiners@helmholtz-muenchen.de

Weitere Informationen:

http://www.ncbi.nlm.nih.gov/pubmed/26207697 - Link to the publication
http://www.helmholtz-muenchen.de/en/news/press-releases/2015/index.html - Press Releases Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/ilbd/index.html - Website CPC

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>