Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the body’s powers of regeneration

01.02.2016

Stem cells can both trigger and cure diseases. During the past five years, the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) has investigated their potential.

Diabetes, heart attacks, cartilage replacement, wound healing, brain tumours, Parkinson's disease: twelve research groups working on the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) have examined various diseases. They have studied the way in which stem cells contribute to their development or can be used to provide better treatment for these conditions in future.


Stem cells can both trigger and cure diseases. During the past five years, the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) has investigated their potential.

The Federal Council mandated the Swiss National Science Foundation (SNSF) to carry out NRP 63 in 2007. The aim was to explain the fundamental mechanisms of stem cell biology and regenerative medicine, train young researchers and promote leading-edge technology in Switzerland. The results of the research done between 2010 and 2015 have been compiled in a brochure that was published recently (link below).

Tumours from stem cells

"NRP 63 has produced a large number of extremely interesting results," concludes Bernard Thorens, President of the NRP 63 Steering Committee. "This is borne out by the hundred-plus publications that have appeared in scientific journals, some of which are very prestigious.

The quality of the individual projects is also demonstrated by the fact that practically all of them are continuing beyond the end of NRP 63." A total of 24 postdocs and 12 doctoral students were trained during the programme. Several groups are already in touch with biotech and pharmaceutical companies that are interested in utilising their results for the good of patients in the future.

The research groups looked at the important role played by the regulations of stem cells. The development of a stem cell into a blood cell, for example, is not controlled exclusively by genes. There are also overriding control mechanisms capable of switching several genes on and off at once. These have to be taken into account by developers of new medicines.

Research also focused on how tumours develop from stem cells. Two teams were able to show that the major danger does not arise from the stem cells themselves, but from immature intermediate forms that change back into stem cells and then go on to develop into tumours. "It's important to recognise the difference between benign and malignant growth," says Lukas Sommer, a professor at the University of Zurich and leader of one of the NRP 63 projects. "Stem cells can only be used in medicine if we are able to control their growth."

Replacing body parts

The group working with Pedro Herrera at the University of Geneva discovered that in mice the cells of the pancreas have an amazing capacity for transformation. If all the insulin-producing cells have been destroyed, they can develop again from related cells in the pancreas. This discovery could revolutionise the treatment of diabetes. Instead of injecting insulin, it may one day be possible to stimulate the patient's own cells to produce it.

In another project, the group working with Ralph Müller at ETH Zurich developed a new material to replace human cartilage. This nanocellulose could be used to reconstruct the visible outer part of the ear or to treat damaged knee cartilage. Populating it with cells from the patient would promote the development of natural tissue. The new material has already been tested in animals.

Most of the scientific publications generated by the twelve research projects are available to the public free of charge (link below).


NRP 63 in brief

The National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) promoted basic research, recruited talented individuals from developmental and cell biology, trained young scientists and increased the visibility of Swiss research in the international arena.

The Federal Council mandated the Swiss National Science Foundation (SNSF) to carry out NRP 63 and awarded it a budget of CHF 10 million. Between 2010 and 2015, twelve research groups based in Basel, Berne, Geneva, Lausanne and Zurich investigated new approaches to the treatment of various diseases.

Contact details

Prof. Bernard Thorens
President of the NFP 63 Steering Committee
University of Lausanne
Tel.: 021 692 39 81
E-mail: Bernard.Thorens@unil.ch

Florian Fisch
Science editor
Swiss National Science Foundation (SNSF)
Wildhainweg 3
3001 Berne
Tel.: 031 308 23 75
E-mail: florian.fisch@snf.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-160201-press-release-nr...
http://www.nfp63.ch/en/Pages/Home.aspx Website of NRP 63 "Stem Cells and Regenerative Medicine"

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: NRP SNF cell biology stem cells tumours various diseases

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>