Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the body’s powers of regeneration

01.02.2016

Stem cells can both trigger and cure diseases. During the past five years, the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) has investigated their potential.

Diabetes, heart attacks, cartilage replacement, wound healing, brain tumours, Parkinson's disease: twelve research groups working on the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) have examined various diseases. They have studied the way in which stem cells contribute to their development or can be used to provide better treatment for these conditions in future.


Stem cells can both trigger and cure diseases. During the past five years, the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) has investigated their potential.

The Federal Council mandated the Swiss National Science Foundation (SNSF) to carry out NRP 63 in 2007. The aim was to explain the fundamental mechanisms of stem cell biology and regenerative medicine, train young researchers and promote leading-edge technology in Switzerland. The results of the research done between 2010 and 2015 have been compiled in a brochure that was published recently (link below).

Tumours from stem cells

"NRP 63 has produced a large number of extremely interesting results," concludes Bernard Thorens, President of the NRP 63 Steering Committee. "This is borne out by the hundred-plus publications that have appeared in scientific journals, some of which are very prestigious.

The quality of the individual projects is also demonstrated by the fact that practically all of them are continuing beyond the end of NRP 63." A total of 24 postdocs and 12 doctoral students were trained during the programme. Several groups are already in touch with biotech and pharmaceutical companies that are interested in utilising their results for the good of patients in the future.

The research groups looked at the important role played by the regulations of stem cells. The development of a stem cell into a blood cell, for example, is not controlled exclusively by genes. There are also overriding control mechanisms capable of switching several genes on and off at once. These have to be taken into account by developers of new medicines.

Research also focused on how tumours develop from stem cells. Two teams were able to show that the major danger does not arise from the stem cells themselves, but from immature intermediate forms that change back into stem cells and then go on to develop into tumours. "It's important to recognise the difference between benign and malignant growth," says Lukas Sommer, a professor at the University of Zurich and leader of one of the NRP 63 projects. "Stem cells can only be used in medicine if we are able to control their growth."

Replacing body parts

The group working with Pedro Herrera at the University of Geneva discovered that in mice the cells of the pancreas have an amazing capacity for transformation. If all the insulin-producing cells have been destroyed, they can develop again from related cells in the pancreas. This discovery could revolutionise the treatment of diabetes. Instead of injecting insulin, it may one day be possible to stimulate the patient's own cells to produce it.

In another project, the group working with Ralph Müller at ETH Zurich developed a new material to replace human cartilage. This nanocellulose could be used to reconstruct the visible outer part of the ear or to treat damaged knee cartilage. Populating it with cells from the patient would promote the development of natural tissue. The new material has already been tested in animals.

Most of the scientific publications generated by the twelve research projects are available to the public free of charge (link below).


NRP 63 in brief

The National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) promoted basic research, recruited talented individuals from developmental and cell biology, trained young scientists and increased the visibility of Swiss research in the international arena.

The Federal Council mandated the Swiss National Science Foundation (SNSF) to carry out NRP 63 and awarded it a budget of CHF 10 million. Between 2010 and 2015, twelve research groups based in Basel, Berne, Geneva, Lausanne and Zurich investigated new approaches to the treatment of various diseases.

Contact details

Prof. Bernard Thorens
President of the NFP 63 Steering Committee
University of Lausanne
Tel.: 021 692 39 81
E-mail: Bernard.Thorens@unil.ch

Florian Fisch
Science editor
Swiss National Science Foundation (SNSF)
Wildhainweg 3
3001 Berne
Tel.: 031 308 23 75
E-mail: florian.fisch@snf.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-160201-press-release-nr...
http://www.nfp63.ch/en/Pages/Home.aspx Website of NRP 63 "Stem Cells and Regenerative Medicine"

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: NRP SNF cell biology stem cells tumours various diseases

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>