Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the body’s powers of regeneration

01.02.2016

Stem cells can both trigger and cure diseases. During the past five years, the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) has investigated their potential.

Diabetes, heart attacks, cartilage replacement, wound healing, brain tumours, Parkinson's disease: twelve research groups working on the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) have examined various diseases. They have studied the way in which stem cells contribute to their development or can be used to provide better treatment for these conditions in future.


Stem cells can both trigger and cure diseases. During the past five years, the National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) has investigated their potential.

The Federal Council mandated the Swiss National Science Foundation (SNSF) to carry out NRP 63 in 2007. The aim was to explain the fundamental mechanisms of stem cell biology and regenerative medicine, train young researchers and promote leading-edge technology in Switzerland. The results of the research done between 2010 and 2015 have been compiled in a brochure that was published recently (link below).

Tumours from stem cells

"NRP 63 has produced a large number of extremely interesting results," concludes Bernard Thorens, President of the NRP 63 Steering Committee. "This is borne out by the hundred-plus publications that have appeared in scientific journals, some of which are very prestigious.

The quality of the individual projects is also demonstrated by the fact that practically all of them are continuing beyond the end of NRP 63." A total of 24 postdocs and 12 doctoral students were trained during the programme. Several groups are already in touch with biotech and pharmaceutical companies that are interested in utilising their results for the good of patients in the future.

The research groups looked at the important role played by the regulations of stem cells. The development of a stem cell into a blood cell, for example, is not controlled exclusively by genes. There are also overriding control mechanisms capable of switching several genes on and off at once. These have to be taken into account by developers of new medicines.

Research also focused on how tumours develop from stem cells. Two teams were able to show that the major danger does not arise from the stem cells themselves, but from immature intermediate forms that change back into stem cells and then go on to develop into tumours. "It's important to recognise the difference between benign and malignant growth," says Lukas Sommer, a professor at the University of Zurich and leader of one of the NRP 63 projects. "Stem cells can only be used in medicine if we are able to control their growth."

Replacing body parts

The group working with Pedro Herrera at the University of Geneva discovered that in mice the cells of the pancreas have an amazing capacity for transformation. If all the insulin-producing cells have been destroyed, they can develop again from related cells in the pancreas. This discovery could revolutionise the treatment of diabetes. Instead of injecting insulin, it may one day be possible to stimulate the patient's own cells to produce it.

In another project, the group working with Ralph Müller at ETH Zurich developed a new material to replace human cartilage. This nanocellulose could be used to reconstruct the visible outer part of the ear or to treat damaged knee cartilage. Populating it with cells from the patient would promote the development of natural tissue. The new material has already been tested in animals.

Most of the scientific publications generated by the twelve research projects are available to the public free of charge (link below).


NRP 63 in brief

The National Research Programme "Stem Cells and Regenerative Medicine" (NRP 63) promoted basic research, recruited talented individuals from developmental and cell biology, trained young scientists and increased the visibility of Swiss research in the international arena.

The Federal Council mandated the Swiss National Science Foundation (SNSF) to carry out NRP 63 and awarded it a budget of CHF 10 million. Between 2010 and 2015, twelve research groups based in Basel, Berne, Geneva, Lausanne and Zurich investigated new approaches to the treatment of various diseases.

Contact details

Prof. Bernard Thorens
President of the NFP 63 Steering Committee
University of Lausanne
Tel.: 021 692 39 81
E-mail: Bernard.Thorens@unil.ch

Florian Fisch
Science editor
Swiss National Science Foundation (SNSF)
Wildhainweg 3
3001 Berne
Tel.: 031 308 23 75
E-mail: florian.fisch@snf.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-160201-press-release-nr...
http://www.nfp63.ch/en/Pages/Home.aspx Website of NRP 63 "Stem Cells and Regenerative Medicine"

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: NRP SNF cell biology stem cells tumours various diseases

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>