Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving Control of Age-Related Obesity

04.05.2017

Research results promise new approaches for prevention and treatment of the condition

The function and distribution of adipose tissue in the body change during the course of life. Beige fat cells, a special type of adipocytes, have the capability to use energy reserves – fatty deposits – by generating heat in a process known as thermogenesis. With increasing age, beige adipocytes take on the morphology of white adipocytes.


Lsd1 placed on white adipocytes (red) prevents the aging of beige adipose tissue (yellow). Photo: Delphine Duteil

Thermogenic activity ceases and with it the cells' ability to burn fat. As a result, the risk of obesity increases. A team working with Freiburg researchers Prof. Dr. Roland Schüle and Dr. Delphine Duteil has now proven that the epigenetic enzyme lysine specific demethylase 1 (Lsd1) plays a key role in this transformation. They are presenting their results in the science journal "Proceedings of the National Academy of Sciences (PNAS)."

The number of beige adipocytes decreases when Lsd1 levels fall in aging adipose tissue. The group nevertheless was able to maintain Lsd1 production specifically in fat cells, and thereby reducing age-related transformation of beige to white adipose tissue.

In an experiment with mice, the amount of beige adipocytes in older animals was maintained at nearly the level corresponding to that of younger mice. Conversely, the research team also showed that loss of Lsd1 in younger animals led to premature transformation of the fat cells. To observe this, the researchers marked the beige adipocytes with a fluorescent protein and reproduced their transformation to white adipose tissue.

Beige fat cells can be generated using cold treatment, for example. These then use fatty acids to produce warmth. Body weight gain is limited as a result. The researchers demonstrated that Lsd1 is not only essential for the development of beige adipocytes, but also for the maintenance of beige fat cells. Therefore, an elevated Lsd1 level is indispensable for the efficient burning of calories.

The analyses showed furthermore that Lsd1 maintains beige adipocytes by means of the target gene Pparα. This gene is interesting from a therapeutic standpoint, because selective and effective drugs can activate or suppress it with relative ease. In their experiments, the team proved that pharmacological activation of Pparα is sufficient to hinder the premature loss of beige fat cells in mice with low levels of Lsd1. The animals were therefore protected from metabolic disorders that are caused by Lsd1 loss.

Roland Schüle and Delphine Duteil carry out their research at the Department of Urology and Clinical Research Center at the Freiburg University Medical Center. Schüle is a member of the cluster of excellence the BIOSS Centre for Biological Signalling Studies of the University of Freiburg.

Original publication:
Delphine Duteil, Milica Tosic, Dominica Willmann, Anastasia Georgiadi, Toufike Kanouni, and Roland Schüle (2016). Lsd1 prevents age-programmed loss of beige adipocytes. PNAS.
doi: 10.1073/pnas.1702641114

Read about Roland Schüle's research in "uni'wissen":
http://www.pr2.uni-freiburg.de/publikationen/uniwissen/uniwissen-2014-1-en/#/8


Contact:
Prof. Dr. Roland Schüle
Department of Urology and Clinical Research Center
Freiburg University Medical Center
BIOSS Centre for Biological Signalling Studies
Tel.: 0761/270-63100
E-Mail: roland.schuele@uniklinik-freiburg.de

Dr. Delphine Duteil
Clinical Research Center
Freiburg University Medical Center
Tel.: 0761/270-63390
E-Mail: delphine.duteil@uniklinik-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/2017/improving-control-of-age-related-obesi...

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>