Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imperfect system is all that protects you from genetic parasites out to destroy your genes

18.11.2014

The PIWI pathway only does so much to keep transposons in check

We like to think of evolution as a fine-tuning process, one that whittles away genetic redundancies. The only problem is, we are not fine-tuned machines. Our bodies are chock-full of parts that either don't work anymore or are so buggy that our biology has Macgyvered a way to make it work.

Take our DNA. No, seriously, take our DNA. It's mostly garbage anyways. Fifty percent of our genome is comprised of genetic parasites, called transposable elements or transposons, that usually lie dormant. When they are allowed to move around the genome, they can wreak havoc on our genes. These bundles of rogue DNA sequences, nicknamed jumping genes, can hop into an essential gene and interrupt it, leading to a variety of mutations that cause conditions like infertility.

Our reproductive cells, called germ cells, are particularly sensitive to transposons, so they rely on a system called the PIWI pathway to keep the transposons in check. Scientists have long wondered how the pathway works and why, despite its checks and balances, do transposons still make up such a large portion of our genome. Understanding the system would help scientists demystify human infertility and other diseases that result when transposons run amok.

Brandeis biology professor Nelson Lau and his lab recently published two studies on the PIWI pathway, short for P-element Induced Wimpy testis. When the pathway is blocked in fruit flies, it results in small, infertile testes and ovaries.

The pathway's main weapons against transposons are PIWI proteins and small RNA molecules called piRNAs.

Think of PIWI proteins as transposon bounty hunters and piRNAs as the wanted posters that provide vital information about the outlaw DNA. But the piRNAs don't offer a complete picture. "Germ cells do something very weird by shredding that wanted poster into a lot of small pieces," Lau says. "Instead of carrying the whole poster, piRNAs carry what might look like part of a nose, half of an eye or a sliver of a lip."

Just as a shredded wanted poster could match many faces, those small piRNAs could match many good genes, so how do PIWI proteins track down and silence transposons without silencing good genes in the process?

In a study published in RNA, Lau and his team, led by graduate student Josef Clark and former technician Christina Post, observed that PIWI proteins are careful. The proteins waited until they had a good composite picture from enough piRNAs before they clamped down on the transposon

But that doesn't mean the system is flawless. Far from it, Lau's team discovered.

In a second study published in Genome Research, Lau and postdocs Yuliya Sytnikova, Reazur Rahman and bioinformatician Gung-wei Chirn observed new transposable elements in the fruit fly cells moving to different areas of the genome, affecting nearby genes. "We all knew that the PIWI pathway was continuously active, so the conventional wisdom was that it was doing a decent job keeping these transposons under wraps," Lau says. "We stood corrected."

It turns out transposons are not so easily subdued. Many slipped past the PIWI system, landing on new genome spots and impacting surrounding genes. Some transposons could even make disguises -- long non-coding RNAs that Lau thinks are meant to trick the PIWI proteins.

This may explain why transposons continue to make up such a large part of our genome, Lau says. "The PIWI pathway works just well enough to allow our germ cells to develop, but not well enough to keep all of the transposons fully redacted," he says.

This may seem an ineffective way to protect our genome -- our body's most important artifact -- but there may be a method in PIWI's madness. After all, transposons have evolved with every member of the animal kingdom, from sponges to humans -- there must be some reason they're tolerated.

Perhaps, Lau says, a bit of genetic mischief, in the right places, is good. It ensures genetic variation and diversity, which is important for a species to reproduce and evolve.

Like so much of our biology, it's not pretty but it is effective -- for the most part.

Leah Burrows | EurekAlert!
Further information:
http://www.brandeis.edu/

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>