Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imperfect system is all that protects you from genetic parasites out to destroy your genes

18.11.2014

The PIWI pathway only does so much to keep transposons in check

We like to think of evolution as a fine-tuning process, one that whittles away genetic redundancies. The only problem is, we are not fine-tuned machines. Our bodies are chock-full of parts that either don't work anymore or are so buggy that our biology has Macgyvered a way to make it work.

Take our DNA. No, seriously, take our DNA. It's mostly garbage anyways. Fifty percent of our genome is comprised of genetic parasites, called transposable elements or transposons, that usually lie dormant. When they are allowed to move around the genome, they can wreak havoc on our genes. These bundles of rogue DNA sequences, nicknamed jumping genes, can hop into an essential gene and interrupt it, leading to a variety of mutations that cause conditions like infertility.

Our reproductive cells, called germ cells, are particularly sensitive to transposons, so they rely on a system called the PIWI pathway to keep the transposons in check. Scientists have long wondered how the pathway works and why, despite its checks and balances, do transposons still make up such a large portion of our genome. Understanding the system would help scientists demystify human infertility and other diseases that result when transposons run amok.

Brandeis biology professor Nelson Lau and his lab recently published two studies on the PIWI pathway, short for P-element Induced Wimpy testis. When the pathway is blocked in fruit flies, it results in small, infertile testes and ovaries.

The pathway's main weapons against transposons are PIWI proteins and small RNA molecules called piRNAs.

Think of PIWI proteins as transposon bounty hunters and piRNAs as the wanted posters that provide vital information about the outlaw DNA. But the piRNAs don't offer a complete picture. "Germ cells do something very weird by shredding that wanted poster into a lot of small pieces," Lau says. "Instead of carrying the whole poster, piRNAs carry what might look like part of a nose, half of an eye or a sliver of a lip."

Just as a shredded wanted poster could match many faces, those small piRNAs could match many good genes, so how do PIWI proteins track down and silence transposons without silencing good genes in the process?

In a study published in RNA, Lau and his team, led by graduate student Josef Clark and former technician Christina Post, observed that PIWI proteins are careful. The proteins waited until they had a good composite picture from enough piRNAs before they clamped down on the transposon

But that doesn't mean the system is flawless. Far from it, Lau's team discovered.

In a second study published in Genome Research, Lau and postdocs Yuliya Sytnikova, Reazur Rahman and bioinformatician Gung-wei Chirn observed new transposable elements in the fruit fly cells moving to different areas of the genome, affecting nearby genes. "We all knew that the PIWI pathway was continuously active, so the conventional wisdom was that it was doing a decent job keeping these transposons under wraps," Lau says. "We stood corrected."

It turns out transposons are not so easily subdued. Many slipped past the PIWI system, landing on new genome spots and impacting surrounding genes. Some transposons could even make disguises -- long non-coding RNAs that Lau thinks are meant to trick the PIWI proteins.

This may explain why transposons continue to make up such a large part of our genome, Lau says. "The PIWI pathway works just well enough to allow our germ cells to develop, but not well enough to keep all of the transposons fully redacted," he says.

This may seem an ineffective way to protect our genome -- our body's most important artifact -- but there may be a method in PIWI's madness. After all, transposons have evolved with every member of the animal kingdom, from sponges to humans -- there must be some reason they're tolerated.

Perhaps, Lau says, a bit of genetic mischief, in the right places, is good. It ensures genetic variation and diversity, which is important for a species to reproduce and evolve.

Like so much of our biology, it's not pretty but it is effective -- for the most part.

Leah Burrows | EurekAlert!
Further information:
http://www.brandeis.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>