Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Imperfect system is all that protects you from genetic parasites out to destroy your genes


The PIWI pathway only does so much to keep transposons in check

We like to think of evolution as a fine-tuning process, one that whittles away genetic redundancies. The only problem is, we are not fine-tuned machines. Our bodies are chock-full of parts that either don't work anymore or are so buggy that our biology has Macgyvered a way to make it work.

Take our DNA. No, seriously, take our DNA. It's mostly garbage anyways. Fifty percent of our genome is comprised of genetic parasites, called transposable elements or transposons, that usually lie dormant. When they are allowed to move around the genome, they can wreak havoc on our genes. These bundles of rogue DNA sequences, nicknamed jumping genes, can hop into an essential gene and interrupt it, leading to a variety of mutations that cause conditions like infertility.

Our reproductive cells, called germ cells, are particularly sensitive to transposons, so they rely on a system called the PIWI pathway to keep the transposons in check. Scientists have long wondered how the pathway works and why, despite its checks and balances, do transposons still make up such a large portion of our genome. Understanding the system would help scientists demystify human infertility and other diseases that result when transposons run amok.

Brandeis biology professor Nelson Lau and his lab recently published two studies on the PIWI pathway, short for P-element Induced Wimpy testis. When the pathway is blocked in fruit flies, it results in small, infertile testes and ovaries.

The pathway's main weapons against transposons are PIWI proteins and small RNA molecules called piRNAs.

Think of PIWI proteins as transposon bounty hunters and piRNAs as the wanted posters that provide vital information about the outlaw DNA. But the piRNAs don't offer a complete picture. "Germ cells do something very weird by shredding that wanted poster into a lot of small pieces," Lau says. "Instead of carrying the whole poster, piRNAs carry what might look like part of a nose, half of an eye or a sliver of a lip."

Just as a shredded wanted poster could match many faces, those small piRNAs could match many good genes, so how do PIWI proteins track down and silence transposons without silencing good genes in the process?

In a study published in RNA, Lau and his team, led by graduate student Josef Clark and former technician Christina Post, observed that PIWI proteins are careful. The proteins waited until they had a good composite picture from enough piRNAs before they clamped down on the transposon

But that doesn't mean the system is flawless. Far from it, Lau's team discovered.

In a second study published in Genome Research, Lau and postdocs Yuliya Sytnikova, Reazur Rahman and bioinformatician Gung-wei Chirn observed new transposable elements in the fruit fly cells moving to different areas of the genome, affecting nearby genes. "We all knew that the PIWI pathway was continuously active, so the conventional wisdom was that it was doing a decent job keeping these transposons under wraps," Lau says. "We stood corrected."

It turns out transposons are not so easily subdued. Many slipped past the PIWI system, landing on new genome spots and impacting surrounding genes. Some transposons could even make disguises -- long non-coding RNAs that Lau thinks are meant to trick the PIWI proteins.

This may explain why transposons continue to make up such a large part of our genome, Lau says. "The PIWI pathway works just well enough to allow our germ cells to develop, but not well enough to keep all of the transposons fully redacted," he says.

This may seem an ineffective way to protect our genome -- our body's most important artifact -- but there may be a method in PIWI's madness. After all, transposons have evolved with every member of the animal kingdom, from sponges to humans -- there must be some reason they're tolerated.

Perhaps, Lau says, a bit of genetic mischief, in the right places, is good. It ensures genetic variation and diversity, which is important for a species to reproduce and evolve.

Like so much of our biology, it's not pretty but it is effective -- for the most part.

Leah Burrows | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>