Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying the mechanism for a new class of antiviral drugs could hasten their approval

25.10.2017

New research shows that a new class of antiviral drugs works by causing the virus' replication machinery to pause and backtrack, preventing the virus from efficiently replicating. This discovery, made possible by a high-throughput experimental technique called "magnetic tweezers," could speed the development and approval of related antiviral drugs. A paper describing the research by an international collaboration of scientists from Penn State University, Delft University of Technology in the Netherlands, Friedrich-Alexander University in Germany, and the University of Minnesota, appears October 24, 2017 in the journal Cell Reports.

"Viruses are a massive threat to global public health," said Craig Cameron, professor and holder of the Eberly Family Chair in Biochemistry and Molecular Biology at Penn State and an author of the paper.


The mechanism of a new class of antiviral drug. The RNA polymerase enzyme (yellow) replicates the virus genome by incorporating one nucleotide (black) at a time. Nucleotide analogues (red) are designed as antiviral drugs that can disrupt the replication process. The antiviral drugs work by (1) incorporating mutations, (2) stopping the replication process, or (3) a newly discovered mechanism in which the RNA polymerase enzyme pauses and then backtracks.

Credit: Penn State

"Developing broad-spectrum antiviral drugs -- ones that are effective against many different viruses -- is vital to our ability to prevent or respond to outbreaks. We were able to demonstrate the mechanism of a newly developed class of antiviral drugs that are potentially broad spectrum."

Essentially all viruses, whose genomes are composed of RNA rather than DNA, use an enzyme called RNA-dependent RNA polymerase to express genes and replicate their genome in order to make new copies of themselves. The polymerase enzyme is therefore an attractive target for developing broad-spectrum antivirals.

"In order to make more viruses, the RNA polymerase enzyme replicates the virus genome by incorporating nucleotides -- the building blocks of RNA or DNA, which are made up of a base and a sugar -- one at a time," said Jamie J. Arnold, an associate research professor at Penn State and another author of the paper.

"For many antiviral drugs, alternative versions of these building blocks are designed such that when they are incorporated during replication, they somehow disrupt the process. To understand the disruption mechanism, we used magnetic tweezers that allowed us to monitor the progression of hundreds of individual RNA polymerase enzymes during the replication process in the presence of antiviral drugs."

The magnetic tweezers work by tethering one end of hundreds of individual strands of RNA to a surface and attaching a magnetic bead to the other end. A magnet then holds the strands vertically while the researchers monitor the beads under a microscope.

As the RNA polymerase builds new RNA, the length of the strand changes, moving the bead up or down. Because they can monitor hundreds of these processes simultaneously, the researchers are able to build datasets and develop sound statistical backing for their observations.

"We were particularly interested in an antiviral called T-1106," said Cameron. "It is related to Favipiravir, which was recently approved in Japan for use in the treatment of influenza, but the mechanism was unknown. We were able to show that these antivirals -- a new class that alters the base of the RNA building block, rather than the sugar -- work in a new way.

Unlike other known antivirals that either incorporate mutations into the replication process or stop it completely, this new class works by causing the RNA polymerase enzyme to pause and backtrack. With this understanding, we can begin to fine tune the design of these antivirals and speed up the process of getting them approved."

###

In addition to Cameron and Arnold, the research team included Hyung-Suk Oh and Cheri Lee at Penn State; Nynke H. Dekker, Theo van Laar, and Martin Depken at Delft University of Technology; David Dulin of Delft University of Technology and the Friedrich-Alexander University; and Angela L. Perkins and Daniel A. Harki at the University of Minnesota.

The research was supported by the U.S. National Institute of Allergy and Infectious Disease of the National Institutes of Health, the Burroughs Wellcome Fund, the Netherlands Organisation for Scientific Research, and a European Union ERC Consolidator Grant.

Media Contact

Barbara Kennedy
BarbaraKennedy@psu.edu
814-863-4682

 @penn_state

http://live.psu.edu 

Barbara Kennedy | EurekAlert!

Further reports about: DNA Molecular Biology RNA RNA polymerase antiviral antiviral drugs enzyme viruses

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>