Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying drug targets for leukaemia

02.05.2016

Researchers from Hong Kong and the U.S. have developed a new statistical and mapping method that could help identify drug targets for treating leukaemia.

In chronic myelogenous leukaemia (CML), too many stem cells in the bone marrow are transformed into a type of white blood cell called granulocytes, making less room for healthy white blood cells, red blood cells and platelets. CML occurs due to a chromosomal abnormality in which an abnormal gene is formed, called the BCR-ABL fusion gene. However, the development of CML is not fully understood, leading to limited treatment options.


The findings could help physicians develop more effective treatment strategies for chronic myelogenous leukaemia.

Copyright : Sebastian Kaulitzki

The BCR-ABL gene activates enzyme pathways that disrupt protein synthesis and cause uncontrolled cell growth. A better understanding of these pathways and how they are activated could lead to the discovery of drug targets for CML.

Past research has shown that the expression of a protein-coding gene called NPM1 changes in tumour cells. NPM1 was found to respond to signals from enzyme pathways initiated by the BCR-ABL gene.

Benjamin Yung’s research group at The Hong Kong Polytechnic University together with researchers from Harvard University in the U.S. and Queen Elizabeth Hospital in Hong Kong have developed a unique statistical and mapping strategy that identifies the relationships among those genes that are involved in the development of CML.

Using their unique statistical approach, the researchers quantified and analysed publicly available gene expression data of nine CML patients and eight healthy volunteers. They created networking maps from the data to facilitate the visualization of the connections among genes.

They compared NPM1 gene expressions with those from the BCR-ABL-initiated enzyme pathways in the CML patients and similar pathways that exist in healthy individuals. They also explored the role of NPM1 “doublets” – genes strongly co-expressed with NPM1 – in protein formation.

The researchers identified two sets of gene doublets that strongly co-expressed in CML patients but were not co-expressed in healthy individuals. These gene pairs may be related to CML development and thus could be an important target for drug research.

They also found that NPM1 established ten gene-expressing pairs with BCR-ABL pathways in CML patients but only two pairs with similar pathways in healthy individuals, which may mean that NPM1 mediates the activation of other cellular proliferation pathways in CML.

Finally, the researchers used a substance, called resveratrol, which is thought to have anti-cancer properties, on CML cells. Resveratrol caused a decrease in the expression of NPM1-related proteins and is thus a potential drug target for CML therapy.

The researchers’ findings could help physicians develop more effective treatment strategies for CML. Their statistical and mapping strategy can also be used to diagnose and develop treatments for other diseases.

For further information contact:

Professor Benjamin Yung
Department of Health Technology and Informatics
The Hong Kong Polytechnic University
E-mail: ben.yung@polyu.edu.hk

Associated links

The Hong Kong Polytechnic University | Research SEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>