Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying drug targets for leukaemia

02.05.2016

Researchers from Hong Kong and the U.S. have developed a new statistical and mapping method that could help identify drug targets for treating leukaemia.

In chronic myelogenous leukaemia (CML), too many stem cells in the bone marrow are transformed into a type of white blood cell called granulocytes, making less room for healthy white blood cells, red blood cells and platelets. CML occurs due to a chromosomal abnormality in which an abnormal gene is formed, called the BCR-ABL fusion gene. However, the development of CML is not fully understood, leading to limited treatment options.


The findings could help physicians develop more effective treatment strategies for chronic myelogenous leukaemia.

Copyright : Sebastian Kaulitzki

The BCR-ABL gene activates enzyme pathways that disrupt protein synthesis and cause uncontrolled cell growth. A better understanding of these pathways and how they are activated could lead to the discovery of drug targets for CML.

Past research has shown that the expression of a protein-coding gene called NPM1 changes in tumour cells. NPM1 was found to respond to signals from enzyme pathways initiated by the BCR-ABL gene.

Benjamin Yung’s research group at The Hong Kong Polytechnic University together with researchers from Harvard University in the U.S. and Queen Elizabeth Hospital in Hong Kong have developed a unique statistical and mapping strategy that identifies the relationships among those genes that are involved in the development of CML.

Using their unique statistical approach, the researchers quantified and analysed publicly available gene expression data of nine CML patients and eight healthy volunteers. They created networking maps from the data to facilitate the visualization of the connections among genes.

They compared NPM1 gene expressions with those from the BCR-ABL-initiated enzyme pathways in the CML patients and similar pathways that exist in healthy individuals. They also explored the role of NPM1 “doublets” – genes strongly co-expressed with NPM1 – in protein formation.

The researchers identified two sets of gene doublets that strongly co-expressed in CML patients but were not co-expressed in healthy individuals. These gene pairs may be related to CML development and thus could be an important target for drug research.

They also found that NPM1 established ten gene-expressing pairs with BCR-ABL pathways in CML patients but only two pairs with similar pathways in healthy individuals, which may mean that NPM1 mediates the activation of other cellular proliferation pathways in CML.

Finally, the researchers used a substance, called resveratrol, which is thought to have anti-cancer properties, on CML cells. Resveratrol caused a decrease in the expression of NPM1-related proteins and is thus a potential drug target for CML therapy.

The researchers’ findings could help physicians develop more effective treatment strategies for CML. Their statistical and mapping strategy can also be used to diagnose and develop treatments for other diseases.

For further information contact:

Professor Benjamin Yung
Department of Health Technology and Informatics
The Hong Kong Polytechnic University
E-mail: ben.yung@polyu.edu.hk

Associated links

The Hong Kong Polytechnic University | Research SEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>