Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying drug targets for leukaemia

02.05.2016

Researchers from Hong Kong and the U.S. have developed a new statistical and mapping method that could help identify drug targets for treating leukaemia.

In chronic myelogenous leukaemia (CML), too many stem cells in the bone marrow are transformed into a type of white blood cell called granulocytes, making less room for healthy white blood cells, red blood cells and platelets. CML occurs due to a chromosomal abnormality in which an abnormal gene is formed, called the BCR-ABL fusion gene. However, the development of CML is not fully understood, leading to limited treatment options.


The findings could help physicians develop more effective treatment strategies for chronic myelogenous leukaemia.

Copyright : Sebastian Kaulitzki

The BCR-ABL gene activates enzyme pathways that disrupt protein synthesis and cause uncontrolled cell growth. A better understanding of these pathways and how they are activated could lead to the discovery of drug targets for CML.

Past research has shown that the expression of a protein-coding gene called NPM1 changes in tumour cells. NPM1 was found to respond to signals from enzyme pathways initiated by the BCR-ABL gene.

Benjamin Yung’s research group at The Hong Kong Polytechnic University together with researchers from Harvard University in the U.S. and Queen Elizabeth Hospital in Hong Kong have developed a unique statistical and mapping strategy that identifies the relationships among those genes that are involved in the development of CML.

Using their unique statistical approach, the researchers quantified and analysed publicly available gene expression data of nine CML patients and eight healthy volunteers. They created networking maps from the data to facilitate the visualization of the connections among genes.

They compared NPM1 gene expressions with those from the BCR-ABL-initiated enzyme pathways in the CML patients and similar pathways that exist in healthy individuals. They also explored the role of NPM1 “doublets” – genes strongly co-expressed with NPM1 – in protein formation.

The researchers identified two sets of gene doublets that strongly co-expressed in CML patients but were not co-expressed in healthy individuals. These gene pairs may be related to CML development and thus could be an important target for drug research.

They also found that NPM1 established ten gene-expressing pairs with BCR-ABL pathways in CML patients but only two pairs with similar pathways in healthy individuals, which may mean that NPM1 mediates the activation of other cellular proliferation pathways in CML.

Finally, the researchers used a substance, called resveratrol, which is thought to have anti-cancer properties, on CML cells. Resveratrol caused a decrease in the expression of NPM1-related proteins and is thus a potential drug target for CML therapy.

The researchers’ findings could help physicians develop more effective treatment strategies for CML. Their statistical and mapping strategy can also be used to diagnose and develop treatments for other diseases.

For further information contact:

Professor Benjamin Yung
Department of Health Technology and Informatics
The Hong Kong Polytechnic University
E-mail: ben.yung@polyu.edu.hk

Associated links

The Hong Kong Polytechnic University | Research SEA
Further information:
http://www.researchsea.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>