Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017

Halting the spread of resistant bacterial strains is one of the strategies available to tackle hospital infections

Antibiotic resistance of the bacterium Staphylococcus aureus is responsible for 11,300 deaths a year in the United States alone -- a figure that corresponds to half of all deaths caused by gram-positive resistant bacteria in that country. Such high mortality is related to the speed at which the bacterium acquires resistance to antibiotics.


This is a tridimensional structure of the protein relaxase bound to a DNA piece. Histidine, which is essential to cut the DNA and transfer it, is shown in blue (bottom right)

Credit: Radoslaw Pluta, IRB Barcelona

A study performed at the Institute for Research in Biomedicine (IRB Barcelona) and involving the collaboration of the Centro de Investigaciones Biológicas (CIB-CSIC) in Madrid has identified the key component of the machinery that S. aureus uses to acquire and transfer genes that confer resistance to antibiotics. The work has been published this week in the Proceedings of the National Academic of Sciences (PNAS).

"The battle against bacteria -- particularly in the hospital setting where they are a major threat -- implies understanding how genes are transferred to adapt to a changing environment. For example, when they are treated with new antibiotics," explains the head of the study and IRB Barcelona group leader Miquel Coll, also a CSIC researcher, who studies horizontal gene transfer from a structural biology perspective.

Halting the spread

"Horizontal gene transfer confers bacteria with an extraordinary capacity to evolve and adapt rapidly -- a capacity that humans do not have for example," says Coll. One of these pathways is called conjugation, a process by which two bacteria join and one of them transfers a piece of DNA called plasmid to the other. "A plasmid is a small piece of circular DNA that holds very few genes, often including those for antibiotic resistance and it takes only a few minutes to be passed between bacteria," he explains.

Horizontal gene transfer involves machinery in which the relaxase, an enzymatic protein, is a key component. Thanks to the 3D resolution of the structure of the complex formed by the relaxase with a fragment of the plasmid DNA, the researchers have identified that an amino acid histidine is a pivotal element in the DNA processing and thus in the transfer and the spread of resistance.

"What we have discovered is that the relaxase of diverse strains of S. aureus differs because it uses an amino acid that is not used by any other relaxase that we know of," explains the first author of the study, Radoslaw Pluta, former "la Caixa" PhD student at IRB Barcelona, and currently a postdoctoral researcher at the International Institute of Molecular and Cell Biology in Warsaw, Poland.

Histidine is the catalytic residue that allows the relaxase to cut DNA, bind to it, and stretch one of the two strands and take it into the receptor bacterium, where the strand replicates to form a double strand of the plasmid again. This new plasmid now holds the resistance genes and the machinery to transfer them to another bacterium. The scientists indicate that this catalytic histidine is present in the relaxases of 85% of the strains of Staphylococcus aureus.

To test whether histidine is decisive in horizontal gene transfer,, researchers in Manuel Espinosa's group at the CIB-CSIC, who participated in the study, replaced it by a different amino acid and confirmed that it prevents transfer in culture dishes.

The mutation of histidine does not kill that bacterium but rather prevents gene transfer. How could this mechanism be exploited to fight infections? "I don't know," says Coll, "but we now know more details about a lethal bacterium and this may pave the way to the development of molecules to prevent the spread of resistant strains".

Coll explains that hospital infections are the most difficult types to tackle. "We are in a race that we always lose because when a new antibiotic is brought out, resistance quickly emerges and spreads," he describes. The scientist adds that the list of antibiotics for hospital use is "too" short. Apart from the difficulty involved in developing new antibiotics, Coll also comments on another obstacle impeding advancement. "There is little investment because the pharmaceutical industry has other priorities. While this is perfectly valid, resources from the public and private sectors should be pooled".

###

This work has involved the collaboration of Modesto Orozco's group, also at IRB Barcelona, which has performed the theoretical studies to validate the chemical reaction between the plasmid DNA and the protein via histidine. The structural resolution of the complex formed by the protein and the DNA has been achieved using data obtained by X-ray diffraction at the European synchrotron in Grenoble.

Reference article:

Radoslaw Pluta, D. Roeland Boer, Fabián Lorenzo-Díaz, Silvia Russi, Hansel Gómez, Cris Fernández-López, Rosa Pérez-Luque, Modesto Orozco, Manuel Espinosa and Miquel Coll

Structural basis of a novel histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance PNAS (2017): doi: 10.1073/pnas.1702971114

Media Contact

Sonia Armengou
armengou@irbbarcelona.org
34-934-037-255

http://www.irbbarcelona.org 

Sonia Armengou | EurekAlert!

Further reports about: DNA IRB Staphylococcus aureus acid amino acid antibiotics bacteria bacterium gene transfer histidine resistance

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>