Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of a molecule that recognizes HIV in immune cells

05.06.2015

In collaboration with colleagues from California and New York, researchers of the Paul-Ehrlich-Institut have identified a cytosolic receptor which enables cells of the immune system to recognize HIV and to trigger an immune response. The findings of the researchers may be a useful tool for creating an effective endogenous immune response against HIV and helpful to boost vaccine responses. Cell reports on the results of this research work in its online edition of 04.06.2015.

Particular immune cells of the body called dendritic cells are in principle capable of recognizing HIV-1 as foreign invader. HIV-1, usually just referred to as HIV, causes the immune deficiency disease AIDS (acquired immunodeficiency syndrome).


Two HI-Viruses outside the cell (green).

Source: PEI

Up to now, it has been unclear how the cells identify the virus as "foreign". In collaboration with colleagues from the Sanford Burnham Medical Research Institute, La Jolla, California and the Icahn School of Medicine at Mount Sinai, New York, Dr Renate König, head of the research group "Cellular Aspects of Pathogen-Host Interactions" at the Paul-Ehrlich-Institut and her research team have discovered that polyglutamine binding protein 1 plays an important role in this mechanism.

They have demonstrated that this protein recognizes and binds to specific retroviral DNA. Although the genome of retroviruses, which also includes HIV, is normally present as RNA, it must first be transcribed into DNA, before it can integrate into the genome of the host cell. PQBP1 binds to the viral DNA and, moreover, binds to an additional protein called cyclic GMP-AMP synthase. It is not until this connection has been made that cGAS can activate a signal pathway which in turn activates the innate immune system and in turn, the specific immune system.

"With PQBP1, we have identified an important receptor which mediates the recognition of HIV by the cell and the immune system", as Dr König described the research results. Up to now, it was assumed that cGAS alone was able to recognize foreign DNA. The researchers were now able to identify an additional important module in this mechanism.

Without PQBP1, dendritic cells are unable to recognize HIV. This was shown by Dr König and colleagues by investigating blood samples taken from patients suffering from Renpenning syndrome. In patients with this neurodegenerative disorder, the gene for PQBP1 has mutated and the protein is therefore not functional. The retroviral DNA of these patients’ immune cells could not bind to the protein so in turn cGAS signaling is not activated.

In principle, dendritic cells harbor the mechanism described here, which permits the activation of an immune response after the contact with retroviral DNA. Thus, the identified mechanism may guide potential treatment approaches. As Dr König explained the possible benefit from the findings: "Activation of this mechanism by an adjuvant could improve the immune response against HIV in the body and could thus also be used in immune therapy".

Original publication

Yoh SM, Schneider M, Seifried J, Soonthomvacharin S, Akleh RE, Olivieri KC, De Jesus PD, Ruan de Castro CE, Ruiz PA, Germanaud D, des Portes V, García-Sastre A, König R, Chanda SK (2015): PQBP1 is a Proximal Sensor of HIV-1 DNA and Initiates cGAS-dependent Innate Immune Signaling.
Cell Jun 4 [Epub ahead of print].


The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.cell.com/cell/abstract/S0092-8674%2815%2900525-5 Publication (Abstract)
http://www.pei.de/EN/information/journalists-press/press-releases/2015/07-identi... This Press Release on the PEI-Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>