Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice algae: The engine of life in the central Arctic Ocean

12.07.2016

Algae that live in and under the sea ice also serve as a nutritional basis for animals living at great depths

Algae that live in and under the sea ice play a much greater role for the Arctic food web than previously assumed. In a new study, biologists of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) showed that not only animals that live directly under the ice thrive on carbon produced by so-called ice algae.


Arctic amphipod Themisto libellula

Photo: Alfred-Wegener-Institut / A. Kraft

Even species that mostly live at greater depth depend to a large extent on carbon from these algae. This also means that the decline of the Arctic sea ice may have far-reaching consequences for the entire food web of the Arctic Ocean. Their results have been published online now in the journal Limnology & Oceanography.

The summer sea ice in the Arctic is diminishing at a rapid pace and with it the habitat of ice algae. The consequences of this decline for the Arctic ecosystem are difficult to predict. Scientists of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, showed the significance of ice algae for the Arctic food web in this context.

"A number of studies have already speculated that ice algae are an important energy source for the polar ecosystems. We have now been able to show that not only animals associated with ice meet the majority of their carbon needs from ice algae, but that, surprisingly, so do species that mostly live at greater depths," says lead author Doreen Kohlbach.

In a new study, she and her colleagues examined copepods, amphipods, crustaceans and sea angels from the central Arctic Ocean and their dependence on ice algae. A number of these species use the underside of the sea ice as their habitat. Many other species of zooplankton, however, spend their entire lives floating in water depths up to 1000 metres and more.

"We now know that ice algae play a much more important role for the pelagic food web than previously assumed. This finding also means, however, that the decline of the ice could have a more profound impact on Arctic marine animals, including fish, seals and ultimately also polar bears, than hitherto suspected," says Doreen Kohlbach.

The AWI researcher was able to establish the close relationship between zooplankton and ice algae using fatty acids as biomarkers, which are passed on unchanged in the food chain. The typical fatty acids in ice algae are thus indicators of whether an animal has ingested carbon from ice algae via food. In order to precisely determine the proportion of ice algae carbon in the diet, Doreen Kohlbach also performed an isotope analysis of these biomarkers.

The scientist took advantage of the fact that ice algae inherently have a higher proportion of heavy carbon isotopes incorporated in their cells than algae that float freely in the water. On the basis of the ratio of heavy to light carbon isotopes in the biomarkers it is possible to determine the exact proportion of carbon derived from ice algae in the organisms along the food web.

The result showed that ice-associated animals derive between 60 and 90 percent of their carbon from the ice. For animals living at greater depths, the percentages were between 20 and 50 – significantly higher than expected. "Personally, I was most surprised by the percentage in the predatory amphipod Themisto libellula, which lives in the open waters and is not known to hunt under the surface of the ice. We now know that it obtains up to 45 percent of its carbon from ice algae, which had been eaten by its prey," says AWI sea ice ecologist and co-author Dr Hauke Flores. “We found that pelagic copepods also obtain up to 50 percent from these algae, even though we had assumed that they mainly feed on algae from the water column," Hauke Flores continues.

These figures were also surprising in view of the fact that ice algae mainly grow in spring when little light penetrates the ice, which is still thick at that time of the year. The samples, however, were taken in the summer – and the percentage of ice algae carbon in the food chain was still relatively high. The AWI scientists now wonder what the figures look like at other times of the year. They are also interested in whether a greater distinction can be made between the various ice algae and whether perhaps there is a key alga.

Based on the new study, it is now possible to back up the flow of ice algae carbon through the summer food web in the central Arctic using specific figures. AWI biologists can use these figures in model calculations to assess the consequences of the sea ice decline for the Arctic ecosystem.


Notes for Editors:
The study was published under the following title in the journal Limnology & Oceanography:
Doreen Kohlbach, Martin Graeve, Benjamin Lange, Carmen David, Ilka Peeken, Hauke Flores: The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: food web relationships revealed by lipid and stable isotope analyses, Limnology & Oceanography, DOI: 10.1002/lno.10351, http://onlinelibrary.wiley.com/doi/10.1002/lno.10351/full

For printable photos, see the online version of this press release at: http://www.awi.de/nc/en/about-us/service/press/press-release/eisalgen-der-motor-des-lebens-im-zentralen-arktischen-ozean.html

For further information about sea ice biology, please visit: http://www.awi.de/en/focus/sea-ice/artikel/life-in-and-underneath-sea-ice.html

Your scientific contacts at the Alfred Wegener Institute are:
• Doreen Kohlbach (tel.: +49 (0)471 4831 - 1085; e-mail: Doreen.Kohlbach(at)awi.de)
• Dr Hauke Flores (tel.: +49 (0)471 4831 - 1444; e-mail: Hauke.Flores(at)awi.de)

Your contact in the Communications and Media Department is Sina Löschke (tel.: +49 (0)471 4831 - 2008; email: medien(at)awi.de).

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid latitude oceans. It coordinates polar research in Germany and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic for the international science community. The Alfred Wegener Institute is one of the 18 research centres belonging to the Helmholtz Association, Germany's largest scientific organisation.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

Further reports about: Arctic Ecosystem Oceanography Polar- und Meeresforschung sea ice

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>