Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen conversion by the enzyme ‘Hydrogenase’

27.01.2015

Researchers from the Max Planck Institute for Chemical Energy Conversion in Mülheim an der Ruhr report a novel ultra-high resolution crystal structure of the catalytically active state of [NiFe] hydrogenase in NATURE.

X-ray crystallography is still the method of choice to determine the atomic structure of large biological macromolecules. One of the major drawbacks of the method is that hydrogens are difficult to detect.

However, hydrogens constitute about 50% of the atoms in proteins and are often involved in important interactions. Their detection, that requires a very high resolution, is of particular significance in enzymes where they directly participate in the reaction as for example in hydrogenases.

Researcher of the MPI for Chemical Energy Conversion (MPI CEC) have now shown how preparations and single crystals can be consistently obtained with superb quality sufficient for sub-Ångström resolution leading to the detection of most of the hydrogens - even close to the metal ions. The new information available and prospects for protein crystallography are demonstrated for the case of a hydrogenase.

Hydrogenases are in the focus of energy research worldwide because of their interesting prospects in biotechnology and in serving as natural models for biomimetic catalysts in hydrogen production and conversion. To survey the hydrogenases it is mandatory to scrutinize the hydrogens in the crystal structure.

Researchers at the MPI CEC were able to obtain an ultra-high resolution crystal structure so that the presented structural data of a [NiFe]-hydrogenase provides an extraordinarily detailed picture of the enzyme poised in a specific catalytic state that has not yet been described but is of central importance in the enzymatic cycle.

The data include the positions of many hydrogens, e.g. the exact location of the hydride and the proton resulting from the initial heterolytic splitting of dihydrogen by the enzyme clarifying this crucial mechanistic step. This direct detection of the products of the conversion of dihydrogen is one of the very interesting and important results of this paper.

To obtain the ultra-high resolution crystal structure the scientists have isolated, purified and crystallized the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F under strictly anaerobic conditions to avoid any inactivation or oxidative damage of the enzyme.

Under an inert gas/hydrogen atmosphere a specific, essentially pure state (Ni-R) was obtained. They used a 3rd generation synchrotron (BESSY II, Berlin) to collect a high quality X-ray diffraction data set that was carefully analyzed.

The project was funded by the Max Planck Society, the German Research Foundation (Deutsche Forschungsgemeinschaft) as part of the Cluster of Excellence RESOLV (EXC 1069), BMBF (03SF0355C), EU/Energy Network project SOLAR-H2 (FP7 contract 212508).

More information
The link to the publication in Nature:
“Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase”
Hideaki Ogata, Koji Nishikawa, and Wolfgang Lubitz
Nature, doi: 10.1038/nature14110
http://www.nature.com/

Prof . Dr. Wolfgang Lubitz, Director at the Max Planck Institute for Chemical Energy Conversion in Mülheim an der Ruhr, 0208/306-3614, wolfgang.lubitz@cec.mpg.de, http://www.cec.mpg.de

Weitere Informationen:

http://www.nature.com/
http://www.cec.mpg.de

Christin Ernst | Max-Planck-Institut für Chemische Energiekonversion

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>