Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hydrogen conversion by the enzyme ‘Hydrogenase’


Researchers from the Max Planck Institute for Chemical Energy Conversion in Mülheim an der Ruhr report a novel ultra-high resolution crystal structure of the catalytically active state of [NiFe] hydrogenase in NATURE.

X-ray crystallography is still the method of choice to determine the atomic structure of large biological macromolecules. One of the major drawbacks of the method is that hydrogens are difficult to detect.

However, hydrogens constitute about 50% of the atoms in proteins and are often involved in important interactions. Their detection, that requires a very high resolution, is of particular significance in enzymes where they directly participate in the reaction as for example in hydrogenases.

Researcher of the MPI for Chemical Energy Conversion (MPI CEC) have now shown how preparations and single crystals can be consistently obtained with superb quality sufficient for sub-Ångström resolution leading to the detection of most of the hydrogens - even close to the metal ions. The new information available and prospects for protein crystallography are demonstrated for the case of a hydrogenase.

Hydrogenases are in the focus of energy research worldwide because of their interesting prospects in biotechnology and in serving as natural models for biomimetic catalysts in hydrogen production and conversion. To survey the hydrogenases it is mandatory to scrutinize the hydrogens in the crystal structure.

Researchers at the MPI CEC were able to obtain an ultra-high resolution crystal structure so that the presented structural data of a [NiFe]-hydrogenase provides an extraordinarily detailed picture of the enzyme poised in a specific catalytic state that has not yet been described but is of central importance in the enzymatic cycle.

The data include the positions of many hydrogens, e.g. the exact location of the hydride and the proton resulting from the initial heterolytic splitting of dihydrogen by the enzyme clarifying this crucial mechanistic step. This direct detection of the products of the conversion of dihydrogen is one of the very interesting and important results of this paper.

To obtain the ultra-high resolution crystal structure the scientists have isolated, purified and crystallized the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F under strictly anaerobic conditions to avoid any inactivation or oxidative damage of the enzyme.

Under an inert gas/hydrogen atmosphere a specific, essentially pure state (Ni-R) was obtained. They used a 3rd generation synchrotron (BESSY II, Berlin) to collect a high quality X-ray diffraction data set that was carefully analyzed.

The project was funded by the Max Planck Society, the German Research Foundation (Deutsche Forschungsgemeinschaft) as part of the Cluster of Excellence RESOLV (EXC 1069), BMBF (03SF0355C), EU/Energy Network project SOLAR-H2 (FP7 contract 212508).

More information
The link to the publication in Nature:
“Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase”
Hideaki Ogata, Koji Nishikawa, and Wolfgang Lubitz
Nature, doi: 10.1038/nature14110

Prof . Dr. Wolfgang Lubitz, Director at the Max Planck Institute for Chemical Energy Conversion in Mülheim an der Ruhr, 0208/306-3614,,

Weitere Informationen:

Christin Ernst | Max-Planck-Institut für Chemische Energiekonversion

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>