Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen conversion by the enzyme ‘Hydrogenase’

27.01.2015

Researchers from the Max Planck Institute for Chemical Energy Conversion in Mülheim an der Ruhr report a novel ultra-high resolution crystal structure of the catalytically active state of [NiFe] hydrogenase in NATURE.

X-ray crystallography is still the method of choice to determine the atomic structure of large biological macromolecules. One of the major drawbacks of the method is that hydrogens are difficult to detect.

However, hydrogens constitute about 50% of the atoms in proteins and are often involved in important interactions. Their detection, that requires a very high resolution, is of particular significance in enzymes where they directly participate in the reaction as for example in hydrogenases.

Researcher of the MPI for Chemical Energy Conversion (MPI CEC) have now shown how preparations and single crystals can be consistently obtained with superb quality sufficient for sub-Ångström resolution leading to the detection of most of the hydrogens - even close to the metal ions. The new information available and prospects for protein crystallography are demonstrated for the case of a hydrogenase.

Hydrogenases are in the focus of energy research worldwide because of their interesting prospects in biotechnology and in serving as natural models for biomimetic catalysts in hydrogen production and conversion. To survey the hydrogenases it is mandatory to scrutinize the hydrogens in the crystal structure.

Researchers at the MPI CEC were able to obtain an ultra-high resolution crystal structure so that the presented structural data of a [NiFe]-hydrogenase provides an extraordinarily detailed picture of the enzyme poised in a specific catalytic state that has not yet been described but is of central importance in the enzymatic cycle.

The data include the positions of many hydrogens, e.g. the exact location of the hydride and the proton resulting from the initial heterolytic splitting of dihydrogen by the enzyme clarifying this crucial mechanistic step. This direct detection of the products of the conversion of dihydrogen is one of the very interesting and important results of this paper.

To obtain the ultra-high resolution crystal structure the scientists have isolated, purified and crystallized the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F under strictly anaerobic conditions to avoid any inactivation or oxidative damage of the enzyme.

Under an inert gas/hydrogen atmosphere a specific, essentially pure state (Ni-R) was obtained. They used a 3rd generation synchrotron (BESSY II, Berlin) to collect a high quality X-ray diffraction data set that was carefully analyzed.

The project was funded by the Max Planck Society, the German Research Foundation (Deutsche Forschungsgemeinschaft) as part of the Cluster of Excellence RESOLV (EXC 1069), BMBF (03SF0355C), EU/Energy Network project SOLAR-H2 (FP7 contract 212508).

More information
The link to the publication in Nature:
“Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase”
Hideaki Ogata, Koji Nishikawa, and Wolfgang Lubitz
Nature, doi: 10.1038/nature14110
http://www.nature.com/

Prof . Dr. Wolfgang Lubitz, Director at the Max Planck Institute for Chemical Energy Conversion in Mülheim an der Ruhr, 0208/306-3614, wolfgang.lubitz@cec.mpg.de, http://www.cec.mpg.de

Weitere Informationen:

http://www.nature.com/
http://www.cec.mpg.de

Christin Ernst | Max-Planck-Institut für Chemische Energiekonversion

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>