Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid forms of the common house mosquito may serve as vectors between birds and humans

26.04.2016

Researchers from Vetmeduni Vienna for the first time collected quantified data on hybrid forms of two species of the northern house mosquito in eastern Austria. The reproductive hybrid feeds – in contrast to the two known species of house mosquito – on the blood of both birds and humans. Hybrid mosquitoes could therefore serve as a vector for the transmission of avian diseases to people. Identification of the three forms is only possible through molecular biology. Morphologically they are indistinct. The study was published in the journal Parasites & Vectors.

The team of researchers from the Institute of Parasitology at Vetmeduni Vienna sampled nearly 1,500 house mosquitoes in eastern Austria. The northern house mosquito Culex pipiens, representing more than 90% of the total catch, was the most abundant.


Different forms of the northern house mosquito are morphologically indistinct.

Carina Zittra/Vetmeduni Vienna

Culex pipiens comprises a complex of ecologically different forms that are morphologically indistinct. Two of these forms are endemic to eastern Austria. First author of the study Carina Zittra has now succeeded in identifying a hybrid of these two forms.

Hybrid of ecological forms with different preferences

By far the most common ecological form collected was Culex pipiens f. pipiens. This form prefers to feed on avian blood, reproduces in mating swarms and requires a blood meal as a protein supplement before the first egg-laying. It also hibernates. The second ecological form, Culex pipiens f. molestus, prefers the blood of mammals including humans. It reproduces through single mating, does not require an initial blood meal and does not hibernate. This mammalophilic form of the house mosquito can therefore bite in the winter as well.

“The hybrid form identified by us is a natural hybrid of these two house mosquito forms,” says Zittra. Further studies are needed to determine which of these different lifestyles the hybrid prefers. However, the researchers do not expect the hybrid to show such a clear blood preference as the two common forms of Culex pipiens.

Hybrids could serve as bridge vectors

When mosquitoes feed, they don’t only suck blood. They can also transmit exotic diseases such as the West Nile virus. Migratory birds are one way these diseases can come to Austria. A transmission from bird to mammal is unlikely, however, as long as mosquitoes such as the ornithophilic Culex pipiens f. pipens remain loyal to their respective source of blood.

According to Zittra, however, the newly discovered hybrids are known not to have a clear preference for the blood of just one type of animal. This raises the possibility that they could become so-called bridge vectors. That means that the hybrid picks up a pathogen from its original host, the bird, and may transmit it to other birds or other species such as humans.

The frequency of hybrids is currently rather low. “We should not disregard the possible presence of hybrid forms in future screenings, however, especially as the hybrids are capable of reproducing,” Zittra adds.

Minimizing the mosquito population

House mosquitos only need a source of standing water for egg-laying, such as plant and flower water or water that has collected in the rain barrel or a toy in the garden. Reservoirs like these should be regularly emptied and care should be taken to prevent standing water or wet areas in order to eliminate potential mosquito breeding habitat.

Zittra also has a valuable tip regarding UV lamps as mosquito traps. “Mosquitoes find their victims by sensing the carbon dioxide released from breath, body temperature and sweat. They are not attracted to light sources – after all, they also bite at night. UV lamps therefore don’t offer much help, except that they attract other, useful insects.”

Service
The article “Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in Eastern Austria“ by Carina Zittra, Eva Flechl, Michael Kothmayer, Simon Vitecek, Heidemarie Rossiter, Thomas Zechmeister and Hans-Peter Fuehrer was published in the journal Parasites & Vectors veröffentlicht. doi: 10.1186/s13071-016-1495-4
http://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-016-1495-4

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Carina Zittra
Institute of Parasitology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2205
carina.zittra@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/presseinformationen-...

Mag.rer.nat Georg Mair | idw - Informationsdienst Wissenschaft

Further reports about: Culex pipiens Veterinary Medicine mosquito mosquitoes

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>