Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid forms of the common house mosquito may serve as vectors between birds and humans

26.04.2016

Researchers from Vetmeduni Vienna for the first time collected quantified data on hybrid forms of two species of the northern house mosquito in eastern Austria. The reproductive hybrid feeds – in contrast to the two known species of house mosquito – on the blood of both birds and humans. Hybrid mosquitoes could therefore serve as a vector for the transmission of avian diseases to people. Identification of the three forms is only possible through molecular biology. Morphologically they are indistinct. The study was published in the journal Parasites & Vectors.

The team of researchers from the Institute of Parasitology at Vetmeduni Vienna sampled nearly 1,500 house mosquitoes in eastern Austria. The northern house mosquito Culex pipiens, representing more than 90% of the total catch, was the most abundant.


Different forms of the northern house mosquito are morphologically indistinct.

Carina Zittra/Vetmeduni Vienna

Culex pipiens comprises a complex of ecologically different forms that are morphologically indistinct. Two of these forms are endemic to eastern Austria. First author of the study Carina Zittra has now succeeded in identifying a hybrid of these two forms.

Hybrid of ecological forms with different preferences

By far the most common ecological form collected was Culex pipiens f. pipiens. This form prefers to feed on avian blood, reproduces in mating swarms and requires a blood meal as a protein supplement before the first egg-laying. It also hibernates. The second ecological form, Culex pipiens f. molestus, prefers the blood of mammals including humans. It reproduces through single mating, does not require an initial blood meal and does not hibernate. This mammalophilic form of the house mosquito can therefore bite in the winter as well.

“The hybrid form identified by us is a natural hybrid of these two house mosquito forms,” says Zittra. Further studies are needed to determine which of these different lifestyles the hybrid prefers. However, the researchers do not expect the hybrid to show such a clear blood preference as the two common forms of Culex pipiens.

Hybrids could serve as bridge vectors

When mosquitoes feed, they don’t only suck blood. They can also transmit exotic diseases such as the West Nile virus. Migratory birds are one way these diseases can come to Austria. A transmission from bird to mammal is unlikely, however, as long as mosquitoes such as the ornithophilic Culex pipiens f. pipens remain loyal to their respective source of blood.

According to Zittra, however, the newly discovered hybrids are known not to have a clear preference for the blood of just one type of animal. This raises the possibility that they could become so-called bridge vectors. That means that the hybrid picks up a pathogen from its original host, the bird, and may transmit it to other birds or other species such as humans.

The frequency of hybrids is currently rather low. “We should not disregard the possible presence of hybrid forms in future screenings, however, especially as the hybrids are capable of reproducing,” Zittra adds.

Minimizing the mosquito population

House mosquitos only need a source of standing water for egg-laying, such as plant and flower water or water that has collected in the rain barrel or a toy in the garden. Reservoirs like these should be regularly emptied and care should be taken to prevent standing water or wet areas in order to eliminate potential mosquito breeding habitat.

Zittra also has a valuable tip regarding UV lamps as mosquito traps. “Mosquitoes find their victims by sensing the carbon dioxide released from breath, body temperature and sweat. They are not attracted to light sources – after all, they also bite at night. UV lamps therefore don’t offer much help, except that they attract other, useful insects.”

Service
The article “Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in Eastern Austria“ by Carina Zittra, Eva Flechl, Michael Kothmayer, Simon Vitecek, Heidemarie Rossiter, Thomas Zechmeister and Hans-Peter Fuehrer was published in the journal Parasites & Vectors veröffentlicht. doi: 10.1186/s13071-016-1495-4
http://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-016-1495-4

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Carina Zittra
Institute of Parasitology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-2205
carina.zittra@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/presseinformationen-...

Mag.rer.nat Georg Mair | idw - Informationsdienst Wissenschaft

Further reports about: Culex pipiens Veterinary Medicine mosquito mosquitoes

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>