Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human transport has unpredictable genetic and evolutionary consequences for marine species

14.10.2016

New research, led by the University of Southampton, has found that human activities such as shipping are having a noticeable impact on marine species and their native habitats.

The research, published in the journal Biology Letters, says that human forms of transport can disrupt natural genetic patterns that have been shaped over long periods of time. This has unknown consequences for both native and invasive species.


Ciona intestinalis.

Credit: 'Station Biologique Roscoff / Wilfried Thomas'.

Lead author and PhD Student Jamie Hudson said: "Marine species are expected to develop populations whereby geographically close populations are more genetically similar than geographically distant populations. However, anthropogenic (environmental change caused by humans) activities such as shipping promote the artificial transport of species and bring distant populations together, leading to the crossing of individuals and therefore genetic material. The disruption of pre-modern genetic patterns through anthropogenic activities is an unprecedented form of global change that has unpredictable consequences for species and their native distributions."

The researchers investigated the genetics of a native marine invertebrate species (the tunicate Ciona intestinalis) in the English Channel, an area with a high prevalence of shipping. Ciona intestinalis has restricted dispersal capabilities and is most often reported in artificial habitats, such as marinas, so are therefore readily transported by human activities.

They collected specimens between June and December 2014 from 15 different locations on the English and French coasts. They looked at sections of DNA called microsatellites (areas of DNA that contain repeating sequences of two to five base pairs), which can be read and can help determine how similar populations are to each other.

They found a mosaic of genetic patterns that could not be explained by the influence of natural or anthropogenic means alone.

Jamie, who is based in the Ecology and Evolution Lab, added: "We found that C. intestinalis from some locations exhibited a shuffling of genetic material, as expected by human-mediated transport (boats can travel further distances than the larvae). However, unexpectedly some of the populations exhibited the opposite pattern (some populations were not genetically similar), despite there being evidence of artificial transport between these locations - this may be due to natural dispersal or premodern population structure.

Taken together, the authors found dissimilar patterns of population structure in a highly urbanised region that could not be predicted by artificial transport alone. They conclude that anthropogenic activities alter genetic composition of native ranges, with unknown consequences for species' evolutionary trajectories.

The research was conducted by Jamie, under the supervision of Dr Marc Rius from the University of Southampton, and Dr. Frédérique Viard and Charlotte Roby at the Station Biologique de Roscoff, in France. This study was funded by the ANR project HYSEA and the University of Southampton.

Media Contact

Glenn Harris
G.Harris@soton.ac.uk
44-023-805-93212

 @unisouthampton

http://www.southampton.ac.uk/ 

Glenn Harris | EurekAlert!

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>