Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human transport has unpredictable genetic and evolutionary consequences for marine species

14.10.2016

New research, led by the University of Southampton, has found that human activities such as shipping are having a noticeable impact on marine species and their native habitats.

The research, published in the journal Biology Letters, says that human forms of transport can disrupt natural genetic patterns that have been shaped over long periods of time. This has unknown consequences for both native and invasive species.


Ciona intestinalis.

Credit: 'Station Biologique Roscoff / Wilfried Thomas'.

Lead author and PhD Student Jamie Hudson said: "Marine species are expected to develop populations whereby geographically close populations are more genetically similar than geographically distant populations. However, anthropogenic (environmental change caused by humans) activities such as shipping promote the artificial transport of species and bring distant populations together, leading to the crossing of individuals and therefore genetic material. The disruption of pre-modern genetic patterns through anthropogenic activities is an unprecedented form of global change that has unpredictable consequences for species and their native distributions."

The researchers investigated the genetics of a native marine invertebrate species (the tunicate Ciona intestinalis) in the English Channel, an area with a high prevalence of shipping. Ciona intestinalis has restricted dispersal capabilities and is most often reported in artificial habitats, such as marinas, so are therefore readily transported by human activities.

They collected specimens between June and December 2014 from 15 different locations on the English and French coasts. They looked at sections of DNA called microsatellites (areas of DNA that contain repeating sequences of two to five base pairs), which can be read and can help determine how similar populations are to each other.

They found a mosaic of genetic patterns that could not be explained by the influence of natural or anthropogenic means alone.

Jamie, who is based in the Ecology and Evolution Lab, added: "We found that C. intestinalis from some locations exhibited a shuffling of genetic material, as expected by human-mediated transport (boats can travel further distances than the larvae). However, unexpectedly some of the populations exhibited the opposite pattern (some populations were not genetically similar), despite there being evidence of artificial transport between these locations - this may be due to natural dispersal or premodern population structure.

Taken together, the authors found dissimilar patterns of population structure in a highly urbanised region that could not be predicted by artificial transport alone. They conclude that anthropogenic activities alter genetic composition of native ranges, with unknown consequences for species' evolutionary trajectories.

The research was conducted by Jamie, under the supervision of Dr Marc Rius from the University of Southampton, and Dr. Frédérique Viard and Charlotte Roby at the Station Biologique de Roscoff, in France. This study was funded by the ANR project HYSEA and the University of Southampton.

Media Contact

Glenn Harris
G.Harris@soton.ac.uk
44-023-805-93212

 @unisouthampton

http://www.southampton.ac.uk/ 

Glenn Harris | EurekAlert!

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>