Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How yeast cells regulate their fat balance

23.06.2016

A research group at the Buchmann Institute for Molecular Life Sciences (BMLS) of Goethe University in Frankfurt, together with colleagues at the Max Planck Institute of Biophysics, has now discovered how yeast cells measure the availability of saturated and unsaturated fatty acids in foodstuffs and adapt their production of membrane lipids to it.

Not only humans but also each of their body cells must watch their fat balance. Fats perform highly specialised functions, especially in the cell membrane. A research group at the Buchmann Institute for Molecular Life Sciences (BMLS) of Goethe University in Frankfurt, together with colleagues at the Max Planck Institute of Biophysics, has now discovered how yeast cells measure the availability of saturated and unsaturated fatty acids in foodstuffs and adapt their production of membrane lipids to it.


Membrane lipids

GU

This opens up new possibilities to understand the production and distribution of fatty acids and cholesterol in our body cells and make them controllable in future, report the researchers in the latest issue of the “Molecular Cell” journal.

A glance in the supermarket refrigerator shows: Low fat, less fat and no fat are en vogue. Yet fats are essential for cell survival as they form the basic structure for the biological membranes which separate cells from the environment and form functional units inside them. In this way, opposing reactions, such as the formation of energy stores and consumption of fat, can be organised in one and the same cell.

“Membrane lipids have a large number of vital cellular functions. They impact on signal transmission from cell to cell, but also affect intracellular communication,” explains Professor Robert Ernst, whose research group at the BMLS has been on the trail of fats’ hidden functions for years. “Hormone-producing cells are particularly susceptible to perturbed fatty acid metabolism and often have difficulties in regulating their membrane lipid composition. A malfunction of fatty acid regulation can, however, lead to cell death and – depending on the type of cell – trigger diseases such as diabetes.”

First observations that living organisms such as bacteria can actively control their fatty acid production were already made decades ago. Yet until recently researchers puzzled over how higher organisms, for example fungi such as baker’s yeast, measure and regulate the ratio of saturated and unsaturated fatty acids in their membrane lipids. Thanks to funding from the German Research Foundation and the Max Planck Society, the working groups headed by Robert Ernst at Goethe University Frankfurt and Gerhard Hummer at the Max Planck Institute of Biophysics have been able to investigate this fundamentally important question.

In order to describe the mechanism of a membrane sensor which measures the degree of lipid saturation in the yeast cell, the researchers used genetic and biochemical methods and simulated the motions and underlying forces of membrane lipids over a period of a few milliseconds by means of extensive molecular dynamic simulations.

These efforts revealed that the sensing mechanism is based on two cylinder-shaped structures which are positioned next to each other in biological membranes. They both exhibit a rough and a smooth surface respectively and rotate around each other. “It’s like a finger in cookie dough that checks how much butter has been added,” explains Robert Ernst. As saturated fats cannot be accommodated by the rough surface of the helix while unsaturated fats can, the fat sensor’s structure changes depending on the membrane environments. Intriguingly, this conformational change can control the downstream production of unsaturated fatty acids.

“This finding paves the way for many more studies”, predicts Robert Ernst. “With our knowledge of this delicate mechanism in yeast we can now focus on finding new sensors in different organelles and species which monitor and control the production of unsaturated fatty acids and cholesterol in our body.” In view of the far-reaching potential of these findings, an international conference will be staged in the near future. The organisers, including researchers from Frankfurt, expect that many cellular functions of membrane lipids will be revisited from a new perspective and that it will be possible to support hormone-producing cells in a more targeted manner.

Publication:
Roberto Covino, Stephanie Ballweg, Claudius Stordeur, Jonas B. Michaelis, Kristina Puth, Florian Wernig, Amir Bahrami, Andreas M. Ernst, Gerhard Hummer, and Robert Ernst: A Eukaryotic Sensor for Membrane Lipid Saturation, Molecular Cell (2016), http://dx.doi.org/10.1016/j.molcel.2016.05.015

A video of the dancing fat sensors can be found under:
www.biochem.uni-frankfurt.de/index.php?id=243
Further information: Prof. Robert Ernst, Buchmann Institute for Molecular Life Sciences, Riedberg Campus, Tel.: (069) 798-42524, ernst@em.uni-frankfurt.de

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-frankfurt.de

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>