Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How yeast cells regulate their fat balance

23.06.2016

A research group at the Buchmann Institute for Molecular Life Sciences (BMLS) of Goethe University in Frankfurt, together with colleagues at the Max Planck Institute of Biophysics, has now discovered how yeast cells measure the availability of saturated and unsaturated fatty acids in foodstuffs and adapt their production of membrane lipids to it.

Not only humans but also each of their body cells must watch their fat balance. Fats perform highly specialised functions, especially in the cell membrane. A research group at the Buchmann Institute for Molecular Life Sciences (BMLS) of Goethe University in Frankfurt, together with colleagues at the Max Planck Institute of Biophysics, has now discovered how yeast cells measure the availability of saturated and unsaturated fatty acids in foodstuffs and adapt their production of membrane lipids to it.


Membrane lipids

GU

This opens up new possibilities to understand the production and distribution of fatty acids and cholesterol in our body cells and make them controllable in future, report the researchers in the latest issue of the “Molecular Cell” journal.

A glance in the supermarket refrigerator shows: Low fat, less fat and no fat are en vogue. Yet fats are essential for cell survival as they form the basic structure for the biological membranes which separate cells from the environment and form functional units inside them. In this way, opposing reactions, such as the formation of energy stores and consumption of fat, can be organised in one and the same cell.

“Membrane lipids have a large number of vital cellular functions. They impact on signal transmission from cell to cell, but also affect intracellular communication,” explains Professor Robert Ernst, whose research group at the BMLS has been on the trail of fats’ hidden functions for years. “Hormone-producing cells are particularly susceptible to perturbed fatty acid metabolism and often have difficulties in regulating their membrane lipid composition. A malfunction of fatty acid regulation can, however, lead to cell death and – depending on the type of cell – trigger diseases such as diabetes.”

First observations that living organisms such as bacteria can actively control their fatty acid production were already made decades ago. Yet until recently researchers puzzled over how higher organisms, for example fungi such as baker’s yeast, measure and regulate the ratio of saturated and unsaturated fatty acids in their membrane lipids. Thanks to funding from the German Research Foundation and the Max Planck Society, the working groups headed by Robert Ernst at Goethe University Frankfurt and Gerhard Hummer at the Max Planck Institute of Biophysics have been able to investigate this fundamentally important question.

In order to describe the mechanism of a membrane sensor which measures the degree of lipid saturation in the yeast cell, the researchers used genetic and biochemical methods and simulated the motions and underlying forces of membrane lipids over a period of a few milliseconds by means of extensive molecular dynamic simulations.

These efforts revealed that the sensing mechanism is based on two cylinder-shaped structures which are positioned next to each other in biological membranes. They both exhibit a rough and a smooth surface respectively and rotate around each other. “It’s like a finger in cookie dough that checks how much butter has been added,” explains Robert Ernst. As saturated fats cannot be accommodated by the rough surface of the helix while unsaturated fats can, the fat sensor’s structure changes depending on the membrane environments. Intriguingly, this conformational change can control the downstream production of unsaturated fatty acids.

“This finding paves the way for many more studies”, predicts Robert Ernst. “With our knowledge of this delicate mechanism in yeast we can now focus on finding new sensors in different organelles and species which monitor and control the production of unsaturated fatty acids and cholesterol in our body.” In view of the far-reaching potential of these findings, an international conference will be staged in the near future. The organisers, including researchers from Frankfurt, expect that many cellular functions of membrane lipids will be revisited from a new perspective and that it will be possible to support hormone-producing cells in a more targeted manner.

Publication:
Roberto Covino, Stephanie Ballweg, Claudius Stordeur, Jonas B. Michaelis, Kristina Puth, Florian Wernig, Amir Bahrami, Andreas M. Ernst, Gerhard Hummer, and Robert Ernst: A Eukaryotic Sensor for Membrane Lipid Saturation, Molecular Cell (2016), http://dx.doi.org/10.1016/j.molcel.2016.05.015

A video of the dancing fat sensors can be found under:
www.biochem.uni-frankfurt.de/index.php?id=243
Further information: Prof. Robert Ernst, Buchmann Institute for Molecular Life Sciences, Riedberg Campus, Tel.: (069) 798-42524, ernst@em.uni-frankfurt.de

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-frankfurt.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>