Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Venus flytrap triggers digestion

21.04.2017

The Venus flytrap digests its prey using enzymes produced by special glands. For the first time, a research team has measured and meticulously analysed the glands' activity.

Venus flytrap (Dionaea muscipula) is a carnivorous plant. Catching its prey, mainly insects, with a trapping structure formed by its leaves, the plants' glands secrete an enzyme to decompose the prey and take up the nutrients released.


The Venus flytrap: The traps' insides are lined with red glands that secrete a digestive enzyme. This secretory mechanism was shown at the vesicle level in plants for the first time.

(Picture: Sönke Scherzer/Dirk Becker)

Although postulated since Darwin’s pioneering studies, these secretory events have not been measured and analysed until now: An international team of researchers headed by Rainer Hedrich, a biophysicist from Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, present the results in the journal PNAS.

When a prey tries to escape the closed trap, it will inevitably touch the sensory hairs inside. Any mechanical contact with the hairs triggers an electrical signal that spreads across the trap in waves. From the third signal, the plant produces the hormone jasmonate; after the fifth signal, the digestive glands that line the inside of the traps like turf are activated.

Glands secrete acidic vesicles to decompose prey

What happens next in the gland cells? They increasingly produce membranous bubbles filled with liquid (secretory vesicles) and give off their content. This happens after mechanical stimulation of the sensory hairs but also when the glands come into contact with the hormone jasmonate. The entire process depends on calcium and is controlled by a number of specific proteins.

Moreover, genes are activated in the glands: "We assume that they provide for the vesicles being loaded with protons and chloride, that is hydrochloric acid," Hedrich explains and he adds: "We used ion-sensitive electrodes to measure that repeated touching of the sensory hairs triggers the influx of calcium ions into the gland. The rising calcium level in the cytoplasm causes the vesicles to fuse with the plasma membrane, similarly to the neurotransmitter secretion of neurons. The influx of calcium is followed by the efflux of protons and chloride after a time delay."

Conclusive analysis with carbon fibre electrodes

What else do the gland vesicles contain? This was analysed using carbon fibre electrodes in cooperation with Erwin Neher (Göttingen), winner of the Nobel Prize, who has a lot of experience with this technique. Together with Neher, the JMU researcher Sönke Scherzer adjusted the measurement method to the conditions prevailing inside the Venus flytrap.

The team positioned a carbon fibre electrode over the gland surface and waited with excitement what would happen. "At first, we were disappointed because we did not immediately detect signals as known from secretory cells in humans and animals," Scherzer recalls.

Should the vesicles contain hydrochloric acid in the first hours after catching the prey but no digestive enzymes yet? And no molecules yet that assure the enzymes' functioning in the acidic environment? Does the plant have to produce all this first?

That's exactly how it works: Molecular biologist Ines Fuchs found out that the plant only starts to produce the enzymes that decompose the prey after several hours. The first characteristic signals occurred after six hours and the process was in full swing 24 hours later. During this phase, the trap is completely acidic and rich in digestive enzymes.

Stabilising effect of glutathione keeps enzymes fit

Professor Heinz Rennenberg (Freiburg) also found glutathione (GSH) in the secreted enzyme. This molecule keeps the enzymes functional in the acidic environment of the Venus flytrap.

The same processes as described above take place in the same chronological order both when the sensory hairs are stimulated and when exposing the trap to the hormone jasmonate only. "A touch will very quickly trigger the jasmonate signalling pathway, but it takes time until the vesicles are produced and loaded with the proper freight which is facilitated by the hormone," Hedrich explains.

Calcium is a mandatory ingredient

How the Venus flytrap floods its "green stomach" with the right mixture and breaks down the prey into its nutrients can be visualised using magnetic resonance imaging. Eberhard Munz from the MRT centre of the JMU's Department of Physics was responsible for this task.

His experiments also showed that when the influx of calcium into the glands is blocked, the trap remains dry. "The calcium activation of the gland cells is therefore crucial," Hedrich says. "So we will now take a closer look at the biology of the calcium channels of Venus flytrap. We also want to investigate the mechanism which counts the signals transmitted by the sensory hairs in the gland and translates it into jasmonate-dependent biology."

"Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells", Sönke Scherzer, Lana Shabala, Benjamin Hedrich, Jörg Fromm, Hubert Bauer, Eberhard Munz, Peter Jakob, Khaled A. S. Al-Rascheid, Ines Kreuzer, Dirk Becker, Monika Eiblmeier, Heinz Rennenberg, Sergey Shabala, Malcolm Bennett, Erwin Neher, and Rainer Hedrich. PNAS, 18 April 2017, DOI 10.1073/pnas.1701860114

Contact

Prof. Dr. Rainer Hedrich, Chair of Botany I of the University of Würzburg, Phone: +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>