Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Toxins Activate Cellular Guides

06.07.2016

A diarrhoea pathogen modifies the surface of intestinal cells, enabling bacteria to colonize it more easily

The ingestion of antibiotics often damages the intestine’s natural flora. This prevents it from keeping pathogens under control; diarrhoea and intestinal inflammation are the result. Clostridium difficile is one of the pathogens that attack intestinal cells through toxins.


Bacterial toxins form cellular protrusions and use septins as guides.

Image by: Carsten Schwan

One of the things the bacteria does is cause a fine network of protrusions to form on the surface of the intestinal cells, thus enabling further bacteria to settle there. Prof. Dr. Dr. Klaus Aktories and Dr. Carsten Schwan and their research group at the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have demonstrated how the toxin CDT of C. difficile bacteria forms these cellular protrusions.

The scientists published their research results in the scientific journal Proceedings of the National Academy of Sciences (PNAS). “By researching the CDT toxin, we are able to better understand how intestinal inflammations are caused by pathogens and how they develop,” says Aktories. “We can also use the toxin as a tool for shedding light on fundamental physiological processes.”

Especially aggressive bacteria of the C. difficile species produce toxins that destroy the cellular structure of intestinal cells. This inhibits the contacts between intestinal cells as well as their function as barriers, which can cause diarrhoea and inflammation. Two important elements of cellular structure are actin and microtubules, which play a key role in preserving the cell’s form, its function as a barrier and its cellular movement processes.

The CDT toxin of C. difficile modifies actin, thereby blocking its chain formation and disrupting its normal function. One result of this is that microtubule chains form more easily, which then multiply to such a degree that many cellular protrusions evolve. These form a network on the intestinal cell’s surface and promote the contact of bacteria with the host cell.

How CDT forms these cellular protrusions was not known until now. The scientists from the University of Freiburg have demonstrated that the influence of the toxin on the cooperation between the two scaffold proteins actin and tubulin depends on a third element: septins. There are up to 13 different septins in a human cell. They interact with each other and can form chains, rings or bands in a process called polymerization.

CDT modifies actin in such a way that the septins can no longer bind to the actin and instead migrate to the cellular membrane. Here, they form collar-like septin polymers, in which tube-shaped microtubules grow. Septins interact directly with the tips of growing microtubules and thus function as guides for the growth of these structures.

The research done by the University of Freiburg team also provides insight into the development of septin collar formations. The Cdc42 and Borg proteins regulate the transport of septins to the membrane and are thus a necessary condition for the collar formations to be able to develop. Similar to how the toxin CDT causes protrusions to form, septins also play a role in the human nervous system by forming nerve protrusions called neurites.

As in the first case, actin, microtubules and septins also interact closely here to form microscopically similar structures. Researching this toxin therefore helps us to better understand fundamental processes in the human body.

Klaus Aktories is the director of Department I at the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg and a member of the University of Freiburg Cluster of Excellence BIOSS Centre for Biological Signalling Studies. Carsten Schwan is a research associate in Aktories’ lab.

Original publication:
Thilo Nölke, Carsten Schwan, Friederike Lehmann, Kristine Østevold, Olivier C. Pertz, and Klaus Aktories (2016). Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase CDT. PNAS. DOI: 10.1073/pnas.1522717113

Article on Klaus Aktories’ research in the University of Freiburg research magazine uni’wissen 01/2013:
http://www.pr2.uni-freiburg.de/publikationen/uniwissen/uniwissen-2013-1/#/36

Contact:
Prof. Dr. Dr. Klaus Aktories
Institute of Experimental and Clinical Pharmacology and Toxicology
University of Freiburg
Phone: +49 (0)761 / 203 - 5301
E-Mail: klaus.aktories@pharmakol.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2016/pm.2016-07-05.101-en

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>