Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Toxins Activate Cellular Guides

06.07.2016

A diarrhoea pathogen modifies the surface of intestinal cells, enabling bacteria to colonize it more easily

The ingestion of antibiotics often damages the intestine’s natural flora. This prevents it from keeping pathogens under control; diarrhoea and intestinal inflammation are the result. Clostridium difficile is one of the pathogens that attack intestinal cells through toxins.


Bacterial toxins form cellular protrusions and use septins as guides.

Image by: Carsten Schwan

One of the things the bacteria does is cause a fine network of protrusions to form on the surface of the intestinal cells, thus enabling further bacteria to settle there. Prof. Dr. Dr. Klaus Aktories and Dr. Carsten Schwan and their research group at the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have demonstrated how the toxin CDT of C. difficile bacteria forms these cellular protrusions.

The scientists published their research results in the scientific journal Proceedings of the National Academy of Sciences (PNAS). “By researching the CDT toxin, we are able to better understand how intestinal inflammations are caused by pathogens and how they develop,” says Aktories. “We can also use the toxin as a tool for shedding light on fundamental physiological processes.”

Especially aggressive bacteria of the C. difficile species produce toxins that destroy the cellular structure of intestinal cells. This inhibits the contacts between intestinal cells as well as their function as barriers, which can cause diarrhoea and inflammation. Two important elements of cellular structure are actin and microtubules, which play a key role in preserving the cell’s form, its function as a barrier and its cellular movement processes.

The CDT toxin of C. difficile modifies actin, thereby blocking its chain formation and disrupting its normal function. One result of this is that microtubule chains form more easily, which then multiply to such a degree that many cellular protrusions evolve. These form a network on the intestinal cell’s surface and promote the contact of bacteria with the host cell.

How CDT forms these cellular protrusions was not known until now. The scientists from the University of Freiburg have demonstrated that the influence of the toxin on the cooperation between the two scaffold proteins actin and tubulin depends on a third element: septins. There are up to 13 different septins in a human cell. They interact with each other and can form chains, rings or bands in a process called polymerization.

CDT modifies actin in such a way that the septins can no longer bind to the actin and instead migrate to the cellular membrane. Here, they form collar-like septin polymers, in which tube-shaped microtubules grow. Septins interact directly with the tips of growing microtubules and thus function as guides for the growth of these structures.

The research done by the University of Freiburg team also provides insight into the development of septin collar formations. The Cdc42 and Borg proteins regulate the transport of septins to the membrane and are thus a necessary condition for the collar formations to be able to develop. Similar to how the toxin CDT causes protrusions to form, septins also play a role in the human nervous system by forming nerve protrusions called neurites.

As in the first case, actin, microtubules and septins also interact closely here to form microscopically similar structures. Researching this toxin therefore helps us to better understand fundamental processes in the human body.

Klaus Aktories is the director of Department I at the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg and a member of the University of Freiburg Cluster of Excellence BIOSS Centre for Biological Signalling Studies. Carsten Schwan is a research associate in Aktories’ lab.

Original publication:
Thilo Nölke, Carsten Schwan, Friederike Lehmann, Kristine Østevold, Olivier C. Pertz, and Klaus Aktories (2016). Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase CDT. PNAS. DOI: 10.1073/pnas.1522717113

Article on Klaus Aktories’ research in the University of Freiburg research magazine uni’wissen 01/2013:
http://www.pr2.uni-freiburg.de/publikationen/uniwissen/uniwissen-2013-1/#/36

Contact:
Prof. Dr. Dr. Klaus Aktories
Institute of Experimental and Clinical Pharmacology and Toxicology
University of Freiburg
Phone: +49 (0)761 / 203 - 5301
E-Mail: klaus.aktories@pharmakol.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2016/pm.2016-07-05.101-en

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>