Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to make chromosomes from DNA

29.07.2015

Restoration of DNA structure shown to be prerequisite

Researchers at the University of Tokyo have discovered a long-overlooked process important for converting a long, string-like DNA molecule into a chromosome. This finding gives us a better understanding of the mechanism of how cells store safely genetic material, DNA.


*Model of condensin function revealed by the present study. © 2015 Takashi Sutani

DNA molecules are long, string-like polymers storing the genetic information of life and, in a cell, are tightly packed into structures called chromosomes. Formation of chromosomes in a dividing cell is required for faithful transmission of information in DNA to daughter cells. The condensin complex is known to play an essential role in assembling chromosomes, but it remains unknown how condensin is involved in folding of DNA molecules.

Researchers at the University of Tokyo, including Assistant Professor Takashi Sutani, Professor Katsuhiko Shirahige (Institute of Molecular and Cellular Biosciences) and Ph.D student Toyonori Sakata (Graduate School of Agricultural and Life Sciences), isolated from cells and analyzed DNA segments to which condensin binds, and revealed that condensin is associated with single-stranded DNA (ssDNA) which is produced by unwinding of the DNA double-helix.

By measuring the amount of ssDNA using an ssDNA binding protein, they found that ssDNA regions existed at expressed genes and were produced by gene expression (or transcription), and that ssDNA amount was further increased in condensin-deficient cells.

They also discovered that chromosome segregation defects in mutant cells that showed lowered levels of condensin function were largely rescued by transcription inhibition. They therefore concluded that ssDNA is produced by unwinding of double-stranded DNA during transcription, that ssDNA is detrimental to assembling chromosomes, and that condensin restores unwound ssDNA segments to double-stranded DNA.

“It was widely believed that unwound DNA segments return spontaneously to canonical double-helical DNA, but this study has revealed that restoration of double-stranded DNA is actively regulated and is important for cell survival. It has also demonstrated for the first time that the presence of ssDNA impedes chromosome organization, providing insight into the mechanism of chromosome formation,” says Assistant Professor Sutani.

This work was conducted in collaboration with the research group of Dr. Tatsuya Hirano (Chief Scientist at RIKEN Institute, Japan).

Image*
Condensin recognizes unwound DNA segments produced by gene expression and restores them to double-stranded DNA. This function proved to be a prerequisite for making chromosomes from DNA.

Paper
Takashi Sutani, Toyonori Sakata, Ryuichiro Nakato, Koji Masuda, Mai Ishibashi, Daisuke Yamashita, Yutaka Suzuki, Tatsuya Hirano, Masashige Bando & Katsuhiko Shirahige, "Condensin targets and reduces unwound DNA structure associated with transcription in mitotic chromosome condensation", Nature Communications Online Edition: 2015/7/23 (Japan time), doi: 10.1038/ncomms8815.


Associated links
UTokyo Research article

Euan McKay | ResearchSea
Further information:
http://www.researchsea.com

Further reports about: DNA DNA molecules DNA segments Hirano Takashi chromosomes double-stranded DNA

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>