Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to make chromosomes from DNA

29.07.2015

Restoration of DNA structure shown to be prerequisite

Researchers at the University of Tokyo have discovered a long-overlooked process important for converting a long, string-like DNA molecule into a chromosome. This finding gives us a better understanding of the mechanism of how cells store safely genetic material, DNA.


*Model of condensin function revealed by the present study. © 2015 Takashi Sutani

DNA molecules are long, string-like polymers storing the genetic information of life and, in a cell, are tightly packed into structures called chromosomes. Formation of chromosomes in a dividing cell is required for faithful transmission of information in DNA to daughter cells. The condensin complex is known to play an essential role in assembling chromosomes, but it remains unknown how condensin is involved in folding of DNA molecules.

Researchers at the University of Tokyo, including Assistant Professor Takashi Sutani, Professor Katsuhiko Shirahige (Institute of Molecular and Cellular Biosciences) and Ph.D student Toyonori Sakata (Graduate School of Agricultural and Life Sciences), isolated from cells and analyzed DNA segments to which condensin binds, and revealed that condensin is associated with single-stranded DNA (ssDNA) which is produced by unwinding of the DNA double-helix.

By measuring the amount of ssDNA using an ssDNA binding protein, they found that ssDNA regions existed at expressed genes and were produced by gene expression (or transcription), and that ssDNA amount was further increased in condensin-deficient cells.

They also discovered that chromosome segregation defects in mutant cells that showed lowered levels of condensin function were largely rescued by transcription inhibition. They therefore concluded that ssDNA is produced by unwinding of double-stranded DNA during transcription, that ssDNA is detrimental to assembling chromosomes, and that condensin restores unwound ssDNA segments to double-stranded DNA.

“It was widely believed that unwound DNA segments return spontaneously to canonical double-helical DNA, but this study has revealed that restoration of double-stranded DNA is actively regulated and is important for cell survival. It has also demonstrated for the first time that the presence of ssDNA impedes chromosome organization, providing insight into the mechanism of chromosome formation,” says Assistant Professor Sutani.

This work was conducted in collaboration with the research group of Dr. Tatsuya Hirano (Chief Scientist at RIKEN Institute, Japan).

Image*
Condensin recognizes unwound DNA segments produced by gene expression and restores them to double-stranded DNA. This function proved to be a prerequisite for making chromosomes from DNA.

Paper
Takashi Sutani, Toyonori Sakata, Ryuichiro Nakato, Koji Masuda, Mai Ishibashi, Daisuke Yamashita, Yutaka Suzuki, Tatsuya Hirano, Masashige Bando & Katsuhiko Shirahige, "Condensin targets and reduces unwound DNA structure associated with transcription in mitotic chromosome condensation", Nature Communications Online Edition: 2015/7/23 (Japan time), doi: 10.1038/ncomms8815.


Associated links
UTokyo Research article

Euan McKay | ResearchSea
Further information:
http://www.researchsea.com

Further reports about: DNA DNA molecules DNA segments Hirano Takashi chromosomes double-stranded DNA

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>