Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How to get rid of proteins


Scientists discover substrates for targeted protein degradation

All life forms depend on proteins which are encoded by genes. Whereas the regulation of protein amounts and activities is analysed in many laboratories, the signals that lead to a regulated degradation of specific proteins are far less well understood.

Physcomitrella patens moss plants in a petri dish.

Photo: Sigrid Gombert, Freiburg

A German team led by the Freiburg-based biologist Professor Ralf Reski has discovered substrates and interaction partners of the so-called N-end rule pathway of protein degradation in the moss Physcomitrella patens. The study is published in the journal “Molecular and Cellular Proteomics”.

From previous research it was evident that an enzyme called ATE flags proteins with the amino acid arginine and that these arginylated proteins are subsequently degraded by the proteasome. “In humans, mice and flies ATE function is essential. Without it, embryos die”, Reski says.

His team had previously discovered that the moss Physcomitrella patens is more robust, as loss of ATE function affects development and energy storage but does not result in moss plants dying. Although the N-end rule pathway of protein degradation was discovered in 1986, it was unclear which proteins are flagged by ATE in plants.

For their current study the team from the Plant Biotechnology department of the University of Freiburg co-operated with Professor Andreas Schlosser and his group from the Rudolf Virchow Center for Experimental Biomedicine of the University of Würzburg.

Together, they developed novel methods in immuno-precipitation and mass spectrometry of arginylated proteins and found five needles in the haystack: After analysing about thirty thousand protein spectra the scientists identified four specific proteins that are flagged by ATE and a small heat shock protein that may act as a molecular chaperone to support ATE function. “Our results provide mechanistic insights into the targeted protein degradation in plants”, Reski says. “They may also help to increase the production of human proteins in moss.” Recently, the first moss-made human protein received the approval of the German regulatory authority BfArM for clinical trials.

The biologists from Freiburg are specialists in moss research and have helped to develop Physcomitrella as a model organism for biology and biotechnology at a world-wide scale. Research was supported by the German Research Foundation DFG, the Freiburg Cluster of Excellence BIOSS Centre for Biological Signalling Studies and the Freiburg Institute for Advanced Studies FRIAS of the University of Freiburg.

Ralf Reski heads the Chair of Plant Biotechnology at the University of Freiburg. The biologist is a member of BIOSS and was Senior Fellow at FRIAS and at USIAS, the University of Strasbourg Institute for Advanced Study, France.

Original Publication:
Sebastian N.W. Hoernstein, Stefanie J. Mueller, Kathrin Fiedler, Marc Schuelke, Jens T. Vanselow, Christian Schüssele, Daniel Lang, Roland Nitschke, Gabor L. Igloi, Andreas Schlosser, Ralf Reski (2016): Identification of targets and interaction partners of arginyl-tRNA protein transferase in the moss Physcomitrella patens. Molecular and Cellular Proteomics, DOI: 10.1074/mcp.M115.057190.

Professor Dr. Ralf Reski
Chair Plant Biotechnology
Faculty of Biology
University of Freiburg
Phone: +49 761 203 6968

Weitere Informationen:

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>