Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to get rid of proteins

14.04.2016

Scientists discover substrates for targeted protein degradation

All life forms depend on proteins which are encoded by genes. Whereas the regulation of protein amounts and activities is analysed in many laboratories, the signals that lead to a regulated degradation of specific proteins are far less well understood.


Physcomitrella patens moss plants in a petri dish.

Photo: Sigrid Gombert, Freiburg

A German team led by the Freiburg-based biologist Professor Ralf Reski has discovered substrates and interaction partners of the so-called N-end rule pathway of protein degradation in the moss Physcomitrella patens. The study is published in the journal “Molecular and Cellular Proteomics”.

From previous research it was evident that an enzyme called ATE flags proteins with the amino acid arginine and that these arginylated proteins are subsequently degraded by the proteasome. “In humans, mice and flies ATE function is essential. Without it, embryos die”, Reski says.

His team had previously discovered that the moss Physcomitrella patens is more robust, as loss of ATE function affects development and energy storage but does not result in moss plants dying. Although the N-end rule pathway of protein degradation was discovered in 1986, it was unclear which proteins are flagged by ATE in plants.

For their current study the team from the Plant Biotechnology department of the University of Freiburg co-operated with Professor Andreas Schlosser and his group from the Rudolf Virchow Center for Experimental Biomedicine of the University of Würzburg.

Together, they developed novel methods in immuno-precipitation and mass spectrometry of arginylated proteins and found five needles in the haystack: After analysing about thirty thousand protein spectra the scientists identified four specific proteins that are flagged by ATE and a small heat shock protein that may act as a molecular chaperone to support ATE function. “Our results provide mechanistic insights into the targeted protein degradation in plants”, Reski says. “They may also help to increase the production of human proteins in moss.” Recently, the first moss-made human protein received the approval of the German regulatory authority BfArM for clinical trials.

The biologists from Freiburg are specialists in moss research and have helped to develop Physcomitrella as a model organism for biology and biotechnology at a world-wide scale. Research was supported by the German Research Foundation DFG, the Freiburg Cluster of Excellence BIOSS Centre for Biological Signalling Studies and the Freiburg Institute for Advanced Studies FRIAS of the University of Freiburg.

Ralf Reski heads the Chair of Plant Biotechnology at the University of Freiburg. The biologist is a member of BIOSS and was Senior Fellow at FRIAS and at USIAS, the University of Strasbourg Institute for Advanced Study, France.

Original Publication:
Sebastian N.W. Hoernstein, Stefanie J. Mueller, Kathrin Fiedler, Marc Schuelke, Jens T. Vanselow, Christian Schüssele, Daniel Lang, Roland Nitschke, Gabor L. Igloi, Andreas Schlosser, Ralf Reski (2016): Identification of targets and interaction partners of arginyl-tRNA protein transferase in the moss Physcomitrella patens. Molecular and Cellular Proteomics, DOI: 10.1074/mcp.M115.057190.

Contact:
Professor Dr. Ralf Reski
Chair Plant Biotechnology
Faculty of Biology
University of Freiburg
Germany
Phone: +49 761 203 6968
E-Mail: pbt@biologie.uni-freiburg.de

www.plant-biotech.net

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2016/pm.2016-04-14.52-en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>