Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to become a T follicular helper cell

31.07.2015

Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design

Follicular helper Tcells (TFH cells), a rare type of immune cell that is essential for inducing a strong and lasting antibody response to viruses and other microbes, have garnered intense interest in recent years but the molecular signals that drive their differentiation had remained unclear. Now, a team of researchers at the La Jolla Institute for Allergy and Immunology has identified a pair of master regulators that control the fate of TFH cells.


Follicular helper T cells (cells with green surface markers) interact closely with B cells (cells with orange surface markers) to facilitate the proliferation of B cells and the production of high affinity antibodies. The interaction site is shown in yellow, DNA in blue.

Credit: Joyce Hu, La Jolla Institute of Allergy and Immunology

Their finding, published in this week's online edition of Nature Immunology, holds great promise for improved vaccine design and may lead to new treatments for immune disorders and possibly even cancer. "Almost all licensed human vaccines work on the basis of inducing a long-term, protective antibody response," says the study's lead author Shane Crotty, Ph.D., a professor in the Institute's Division of Vaccine Discovery. "Being able to enhance or increase the frequency of follicular helper T cells may be an excellent approach for better vaccine design."

Before B cells can launch a full-blown antibody response against invading pathogens they undergo a tightly orchestrated, multi-step maturation process aided by TFH cells. Often compared to a miniaturized Darwinian struggle for survival, this process selectively promotes the proliferation of B cells that produce high-affinity antibodies and weeds out those that produce less potent ones.

"B cells compete for TFH cells to survive," explains postdoctoral researcher and first author Youn Soo Choi, Ph.D., "Only those B cells that produce highly specific antibodies attract TFH cells and are able to proliferate." The survivors undergo successive rounds of mutation and selection resulting in better and better antibodies during the course of an immune response.

"TFH cells are essential for the production of most types of antibodies and defects in TFH function or frequency can have dramatic effects," says Crotty. "It may be particularly important when antibody targets are difficult to recognize and B cells need to explore a bigger mutational landscape. A better understanding of how these cells are produced could really make a difference in how likely it is that your body manages to make good antibodies against an infection."

In an earlier study, Crotty's team had identified the BCL6 gene as a crucial mastermind in the differentiation of TFH cells but important pieces of the puzzles had still been missing. A combination of functional genomics and bioinformatics analysis allowed Choi to narrow the list of potential candidates down to a pair of transcription factors, LEF-1 and TCF-1. Transcription factors act as master switching by binding to regulatory regions in the genome, where they modulate gene activity. He then confirmed the importance of LEF-1 and TCF-1 for the differentiation of TFH cells with the help of mice genetically engineered to lack the genes encoding either LEF-1 or TCF-1.

"Their activity pre-programs CD4+ T cells to respond to TFH induction signals," says Choi. "It seems very likely that any perturbation that results in lower levels of these transcription factors could decrease the likelihood that T cells differentiate into TFH cells."

As a matter of fact, individual differences in the predilection to make more TFH cells could explain why some individuals produce highly efficient antibodies against HIV, while most individuals are unable to mount a potent immune response. "It is very difficult to create high-affinity antibodies for HIV, which are necessary to neutralize virus," explains Crotty. "Interestingly, it turns out that those individuals that are able to make broadly neutralizing antibodies against HIV, have unusually elevated levels of highly functional memory TFH cells. We speculate that these people may have a genetic bias to produce a really good TFH response but we haven't identified it yet."

###

The research was supported by the La Jolla Institute for Allergy and Immunology, the American Cancer Society (RSG-11-161-01-MPC), and the National Institutes of Health (AI105351, AI112579, AI115149, AI119160, AI113806, AI109976, AI063107 and AI072543).

Full citation: "LEF-1 and TCF-1 orchestrate TFH differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6." Youn Soo Choi, Jodi A Gullicksrud, Shaojun Xing, Zhouhao Zeng, Qiang Shan, Fengyin Li, Paul E Love, Weiqun Peng, Hai-Hui Xue & Shane Crotty. doi:10.1038/ni.3226

ABOUT LA JOLLA INSTITUTE

La Jolla Institute for Allergy and Immunology is dedicated to understanding the intricacies and power of the immune system so that we may apply that knowledge to promote human health and prevent a wide range of diseases. Since its founding in 1988 as an independent, nonprofit research organization, the Institute has made numerous advances leading towards its goal: life without disease®.

Media Contact

Gina Kirchweger
gina@lji.org
858-357-7481

 @liairesearch

http://www.liai.org 

Gina Kirchweger | EurekAlert!

Further reports about: B cells HIV T cells TFH antibody response immune response

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>