Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How stick insects handle indigestive food

10.03.2016

Plant cell walls are comprised of many complex polymers that require multiple different enzymes to fully break down, such as cellulase to digest cellulose and xylanase to digest xylan. For decades scientists thought only microbes could produce cellulase, until cellulase genes were found in wood-feeding insects. Now, new research from the Max Planck Institute for Chemical Ecology in Jena, Germany, overturns another old theory. The scientists discovered that stick insects (Phasmatodea) produce cellulases that can handle several types of cell wall polymers equally.

Cellulose as well as xylan and xyloglucan are important components of plant cell walls. All walking sticks ((Phasmatodea) inherited multiple copies of cellulase genes, whose enzymes can attack the glucose backbone of cellulose.


A young Australian stick insect (Extatosoma tiaratum) hangs upside-down on a houseplant at the Max Planck Institute for Chemical Ecology.

Matan Shelomi / Max Planck Institute for Chemical Ecology

However, some of these enzymes can also break down the xylose-backbone of xylan, and others the xylose-glucose backbone of xyloglucan. This discovery marks the first known xyloglucanase of any kind to be found in multicellular animals. Such enzymes in animals were previously not thought to exist.

One enzyme, many substrates

Researchers in the Department of Entomology isolated the cellulase genes from seven species of stick insect, including the Australian Extatosoma tiaratum, the Vietnamese Ramulus artemis, and the Bornean Aretaon asperrimus.

All express multiple different cellulase enzymes from the glycoside hydrolase family 9 (GH9). Maintaining redundant enzymes does not make sense if all have the same function, so the researchers hypothesized some had lost their function or evolved to do something new.

To test what these enzymes were capable of, the genes were expressed in a stable insect cell line, and the activities of the isolated proteins tested against different plant cell wall polymers. The results showed that one groups of enzymes were active against cellulose and xylan, and another cellulose and xyloglucan, and several in each group could also degrade glucomannan.

These abilities held in all families of stick insects, present in the Vietnamese Medauroidea extradentata (Family Phasmatidae), the Madagascan Sipyloidea sipylus (Diapheromeridae), and the Peruvian Peruphasma schultei (Peruphasmatidae). The researchers even got samples of the Californian Timema cristinae (Timematidae), considered the sister group to all other Phasmatodea, and found the same enzymes with the same new abilities.

Such multifunctionality is almost unheard of from glycoside hydrolases 9, and xyloglucanases of any family were never discovered in animals before. “If we hadn’t tested these enzymes on other substrates besides cellulose, there was no way we could have discovered these functions,” said Dr. Matan Shelomi, a postdoctoral fellow at the Max Planck Institute for Chemical Ecology and lead author of the study. “It was good that we did: nobody found these kind of powerful enzymes in an animal before.”

A new twist on an old gene family

Most importantly, the enzyme functions matched the evolutionary relationships between the insects. Xylanase-cellulases from different species were closely related, and the xyloglucanase-cellulases also formed a monophyletic group. Because T. cristinae also had these activities, this means an ancestral, insect cellulase gene duplicated into several genes, some of which were then able to evolve new abilities. This happened before the Phasmatodea evolved. Next the researchers are testing other insects related to the stick insects, to see if they have multifunctional cellulases too.

The ability to break down different polymers with the same enzymes means the Phasmatodea gut is unusually efficient. Along with other enzymes such as cellobiases and xylobiases, their guts can fully degrade nearly all the plant cell wall into its component sugars, using them for nutrition as well as having more access to the easily digested cytoplasm within the cells.

This means they can derive more nutrition from the same leafy diet than other herbivores. Theoretically, they could even digest wood. “There is a big community in Germany of people with stick insects as pets,” says Shelomi, “and they report them nibbling on sticks, moss, bark, and even Styrofoam and electric cables… but leaves are still their main food. Maybe their gut can break down wood, but their jaws are better suited for leaves, which probably taste better too.” [MS]

Original Publication:
Shelomi, M., Heckel, D. G., and Pauchet, Y. (2016). Ancestral Gene Duplication Enabled the Evolution of Multifunctional Cellulases in Stick Insects (Phasmatodea). Insect Biochemistry and Molecular Biology 71: 1-11. Doi: 10.1016/j.ibmb.2016.02.003
http://dx.doi.org/10.1016/j.ibmb.2016.02.003

Further Information:
Dr. Matan Shelomi, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, Tel. +49 3641 57-1560, E-Mail mshelomi@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2015.htm

Weitere Informationen:

http://www.ice.mpg.de/ext/1260.html?&L=0 (How stick insects handle indigestive food)
http://www.ice.mpg.de/ext/655.html (Project Group "Molecular Biology of the Insect Digestive System")
http://www.ice.mpg.de/ext/entomology.html?&L=0 (Department of Entomology)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>