Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How stick insects handle indigestive food

10.03.2016

Plant cell walls are comprised of many complex polymers that require multiple different enzymes to fully break down, such as cellulase to digest cellulose and xylanase to digest xylan. For decades scientists thought only microbes could produce cellulase, until cellulase genes were found in wood-feeding insects. Now, new research from the Max Planck Institute for Chemical Ecology in Jena, Germany, overturns another old theory. The scientists discovered that stick insects (Phasmatodea) produce cellulases that can handle several types of cell wall polymers equally.

Cellulose as well as xylan and xyloglucan are important components of plant cell walls. All walking sticks ((Phasmatodea) inherited multiple copies of cellulase genes, whose enzymes can attack the glucose backbone of cellulose.


A young Australian stick insect (Extatosoma tiaratum) hangs upside-down on a houseplant at the Max Planck Institute for Chemical Ecology.

Matan Shelomi / Max Planck Institute for Chemical Ecology

However, some of these enzymes can also break down the xylose-backbone of xylan, and others the xylose-glucose backbone of xyloglucan. This discovery marks the first known xyloglucanase of any kind to be found in multicellular animals. Such enzymes in animals were previously not thought to exist.

One enzyme, many substrates

Researchers in the Department of Entomology isolated the cellulase genes from seven species of stick insect, including the Australian Extatosoma tiaratum, the Vietnamese Ramulus artemis, and the Bornean Aretaon asperrimus.

All express multiple different cellulase enzymes from the glycoside hydrolase family 9 (GH9). Maintaining redundant enzymes does not make sense if all have the same function, so the researchers hypothesized some had lost their function or evolved to do something new.

To test what these enzymes were capable of, the genes were expressed in a stable insect cell line, and the activities of the isolated proteins tested against different plant cell wall polymers. The results showed that one groups of enzymes were active against cellulose and xylan, and another cellulose and xyloglucan, and several in each group could also degrade glucomannan.

These abilities held in all families of stick insects, present in the Vietnamese Medauroidea extradentata (Family Phasmatidae), the Madagascan Sipyloidea sipylus (Diapheromeridae), and the Peruvian Peruphasma schultei (Peruphasmatidae). The researchers even got samples of the Californian Timema cristinae (Timematidae), considered the sister group to all other Phasmatodea, and found the same enzymes with the same new abilities.

Such multifunctionality is almost unheard of from glycoside hydrolases 9, and xyloglucanases of any family were never discovered in animals before. “If we hadn’t tested these enzymes on other substrates besides cellulose, there was no way we could have discovered these functions,” said Dr. Matan Shelomi, a postdoctoral fellow at the Max Planck Institute for Chemical Ecology and lead author of the study. “It was good that we did: nobody found these kind of powerful enzymes in an animal before.”

A new twist on an old gene family

Most importantly, the enzyme functions matched the evolutionary relationships between the insects. Xylanase-cellulases from different species were closely related, and the xyloglucanase-cellulases also formed a monophyletic group. Because T. cristinae also had these activities, this means an ancestral, insect cellulase gene duplicated into several genes, some of which were then able to evolve new abilities. This happened before the Phasmatodea evolved. Next the researchers are testing other insects related to the stick insects, to see if they have multifunctional cellulases too.

The ability to break down different polymers with the same enzymes means the Phasmatodea gut is unusually efficient. Along with other enzymes such as cellobiases and xylobiases, their guts can fully degrade nearly all the plant cell wall into its component sugars, using them for nutrition as well as having more access to the easily digested cytoplasm within the cells.

This means they can derive more nutrition from the same leafy diet than other herbivores. Theoretically, they could even digest wood. “There is a big community in Germany of people with stick insects as pets,” says Shelomi, “and they report them nibbling on sticks, moss, bark, and even Styrofoam and electric cables… but leaves are still their main food. Maybe their gut can break down wood, but their jaws are better suited for leaves, which probably taste better too.” [MS]

Original Publication:
Shelomi, M., Heckel, D. G., and Pauchet, Y. (2016). Ancestral Gene Duplication Enabled the Evolution of Multifunctional Cellulases in Stick Insects (Phasmatodea). Insect Biochemistry and Molecular Biology 71: 1-11. Doi: 10.1016/j.ibmb.2016.02.003
http://dx.doi.org/10.1016/j.ibmb.2016.02.003

Further Information:
Dr. Matan Shelomi, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, Tel. +49 3641 57-1560, E-Mail mshelomi@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2015.htm

Weitere Informationen:

http://www.ice.mpg.de/ext/1260.html?&L=0 (How stick insects handle indigestive food)
http://www.ice.mpg.de/ext/655.html (Project Group "Molecular Biology of the Insect Digestive System")
http://www.ice.mpg.de/ext/entomology.html?&L=0 (Department of Entomology)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>