Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How proteins find the right path

10.04.2015

Scientists at the University of Konstanz reveal molecular control of protein transport in cells / Publication in “Science”

A package arriving at the wrong address causes confusion, in many cases leading to stress. This concept also applies to protein transport in living cells. The team around the Konstanz-based biologist Professor Elke Deuerling, who also is the speaker for the Collaborative Research Centre “Chemical and Biological Principles of Cellular Proteostasis” (SFB 969), has now discovered exactly what is necessary to prevent erroneous protein transport.


photo of Prof. Dr. Elke Deuerling and Dr. Martin Gamerdinger

Two competing activities ensure that proteins safely arrive at their intended destination – in cell organelles like the mitochondria and the endoplasmic reticulum (ER), in particular. The team succeeded in uncovering that, in contrast to the prevailing view, successful protein transport requires not only the signal recognition particle (SRP), but also the nascent polypeptide-associated complex (NAC). The elucidation of this fundamental cellular process may have far-reaching implications for research on age-related defects and diseases, such as Alzheimer’s. The study’s results were published 10 April 2015 in “Science.”

In 1999, Günter Blobel was awarded the Nobel Prize for Medicine for the discovery of the signal recognition particle (SRP) pathway that sorts and delivers proteins to the ER. Within the SFB 969, Dr. Martin Gamerdinger now was able to prove that also the protein complex NAC is necessary for accurate protein sorting by inhibiting the transport of non-authentic proteins into the ER. “Until now,” states Martin Gamerdinger, “it was generally believed that solely the signal recognition particle fulfills the critical role in correct protein transport by stimulating the process. We discovered, however, that the process also must be inhibited in order to prevent erroneous protein targeting.” Evidence for this antagonistic principle was collected with the help of an experimental set-up using the nematode C. elegans and reducing the level of NAC. Martin Gamerdinger comments: “We observed, that in the absence of NAC, the animals experience stress in the ER as well as in mitochondria and live only half as long.”

Elke Deuerling compares NAC with ticket checkers who let people into football games, concerts or the cinema based on the kind of ticket. This controlling function is crucial because ribosomes that produce proteins tend to bind the membrane of the endoplasmic reticulum unspecifically. Without NAC, a part of the proteins being produced by ribosomes mistakenly end up in the ER. “NAC acts as a shield between the ribosome and the endoplasmic reticulum. Only once a protein leaves the ribosome with the right signal or “ticket” for the ER, the signal recognition particle appears to push aside the NAC complex and the protein can enter the ER. The transport only correctly works when the balance between SRP and the NAC complex is right,” explains Elke Deuerling.

Proteins ending up in the wrong location, not only disturb the homeostasis in the endoplasmic reticulum, but also in mitochondria, because proteins specific to them don’t arrive in the mitochondria, but rather in the endoplasmic reticulum. “This creates an enormous stress in the organism and leads to a drastically shortened lifespan of C. elegans,” says the molecular biologist.

The protein complex NAC is essential for all higher cells, also in humans. For this reason, it was impossible to “turn off” the NAC genes, since this would lead to immediate cell death. Instead of the “knock-out” method, Martin Gamerdinger utilized the “knock-down” principle by simply reducing the NAC levels. Elke Deuerling adds: “The trick was to choose the right model organism, C. elegans. We were able to achieve our results by combining a variety of scientific techniques - biochemical approaches, the establishment of new transgenic C. elegans strains and high-resolution microscopy – and with the additional support of my doctoral student Anne Hanebuth and the applied bioinformatics Junior Professor Tancred Frickey.”

Original Publication:
Martin Gamerdinger, Marie Anne Hanebuth, Tancred Frickey, Elke Deuerling: “The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum”. In: Science, 10. April 2015, Issue 34, No. 6231.


Contact:
University of Konstanz
Communications and Marketing
Phone: +49 7531 88-3603
E-mail: kum@uni-konstanz.de

Prof. Elke Deuerling
University of Konstanz
Molecular Biology
Universitätsstraße 10
78464 Konstanz
Phone: +49 7531 88-2647
E-mail: elke.deuerling@uni-konstanz.de

Weitere Informationen:

http://www.uni.kn

Julia Wandt | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>