Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How proteins find the right path

10.04.2015

Scientists at the University of Konstanz reveal molecular control of protein transport in cells / Publication in “Science”

A package arriving at the wrong address causes confusion, in many cases leading to stress. This concept also applies to protein transport in living cells. The team around the Konstanz-based biologist Professor Elke Deuerling, who also is the speaker for the Collaborative Research Centre “Chemical and Biological Principles of Cellular Proteostasis” (SFB 969), has now discovered exactly what is necessary to prevent erroneous protein transport.


photo of Prof. Dr. Elke Deuerling and Dr. Martin Gamerdinger

Two competing activities ensure that proteins safely arrive at their intended destination – in cell organelles like the mitochondria and the endoplasmic reticulum (ER), in particular. The team succeeded in uncovering that, in contrast to the prevailing view, successful protein transport requires not only the signal recognition particle (SRP), but also the nascent polypeptide-associated complex (NAC). The elucidation of this fundamental cellular process may have far-reaching implications for research on age-related defects and diseases, such as Alzheimer’s. The study’s results were published 10 April 2015 in “Science.”

In 1999, Günter Blobel was awarded the Nobel Prize for Medicine for the discovery of the signal recognition particle (SRP) pathway that sorts and delivers proteins to the ER. Within the SFB 969, Dr. Martin Gamerdinger now was able to prove that also the protein complex NAC is necessary for accurate protein sorting by inhibiting the transport of non-authentic proteins into the ER. “Until now,” states Martin Gamerdinger, “it was generally believed that solely the signal recognition particle fulfills the critical role in correct protein transport by stimulating the process. We discovered, however, that the process also must be inhibited in order to prevent erroneous protein targeting.” Evidence for this antagonistic principle was collected with the help of an experimental set-up using the nematode C. elegans and reducing the level of NAC. Martin Gamerdinger comments: “We observed, that in the absence of NAC, the animals experience stress in the ER as well as in mitochondria and live only half as long.”

Elke Deuerling compares NAC with ticket checkers who let people into football games, concerts or the cinema based on the kind of ticket. This controlling function is crucial because ribosomes that produce proteins tend to bind the membrane of the endoplasmic reticulum unspecifically. Without NAC, a part of the proteins being produced by ribosomes mistakenly end up in the ER. “NAC acts as a shield between the ribosome and the endoplasmic reticulum. Only once a protein leaves the ribosome with the right signal or “ticket” for the ER, the signal recognition particle appears to push aside the NAC complex and the protein can enter the ER. The transport only correctly works when the balance between SRP and the NAC complex is right,” explains Elke Deuerling.

Proteins ending up in the wrong location, not only disturb the homeostasis in the endoplasmic reticulum, but also in mitochondria, because proteins specific to them don’t arrive in the mitochondria, but rather in the endoplasmic reticulum. “This creates an enormous stress in the organism and leads to a drastically shortened lifespan of C. elegans,” says the molecular biologist.

The protein complex NAC is essential for all higher cells, also in humans. For this reason, it was impossible to “turn off” the NAC genes, since this would lead to immediate cell death. Instead of the “knock-out” method, Martin Gamerdinger utilized the “knock-down” principle by simply reducing the NAC levels. Elke Deuerling adds: “The trick was to choose the right model organism, C. elegans. We were able to achieve our results by combining a variety of scientific techniques - biochemical approaches, the establishment of new transgenic C. elegans strains and high-resolution microscopy – and with the additional support of my doctoral student Anne Hanebuth and the applied bioinformatics Junior Professor Tancred Frickey.”

Original Publication:
Martin Gamerdinger, Marie Anne Hanebuth, Tancred Frickey, Elke Deuerling: “The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum”. In: Science, 10. April 2015, Issue 34, No. 6231.


Contact:
University of Konstanz
Communications and Marketing
Phone: +49 7531 88-3603
E-mail: kum@uni-konstanz.de

Prof. Elke Deuerling
University of Konstanz
Molecular Biology
Universitätsstraße 10
78464 Konstanz
Phone: +49 7531 88-2647
E-mail: elke.deuerling@uni-konstanz.de

Weitere Informationen:

http://www.uni.kn

Julia Wandt | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>