Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants see light

19.01.2018

The proteins PCH1 and PCHL help plants adapt to their surroundings

Plants react sensitively to changes in their surroundings and possess the ability to adapt to them. They use the photoreceptor protein phytochrome B to see light and then regulate processes such as seed germination, seedling development, longitudinal growth and flower formation.


Thale cress plant

Photo: Thomas Kunz

A team led by Prof. Dr. Andreas Hiltbrunner from the Institute of Biology II at the University of Freiburg has recently conducted a study that shows that both proteins PCH1 and PCHL influence this receptors’ photosensitivity. The researchers recently published their findings in the journal Nature Communications.

Phytochrome B measures the light spectrum, which varies depending on the surroundings. The protein works like a kind of switch: the bright red light of sunlight activates phytochrome B, while it is inactivated by far-red light which is abundant in canopy shade.

However, it can also switch from the active form to the inactive ground state independently of light. You would call this process dark reversion. It influences the amount of protein available in the active state, thereby affecting the plant’s light perception.

In their study, the scientists have now found out that there are two proteins in the thale cress plant, PCH1 and PCHL, which bind to phytochrome B and influence the activity of the receptor. Using a special method of spectroscopy, the researchers showed that the dark reversion of phytochrome B is almost completely suppressed when the amount of PCH1 or PCHL is increased, while the process is accelerated when PCH1 and PCHL are missing. By allowing the plants to regulate the change from the active to the inactive state, they can adapt the photosensitivity of the phytochrome B photoreceptor to different conditions.

The following were involved in the study: Beatrix Enderle, Dr. David Sheerin, Philipp Schwenk, Dr. Cornelia Klose and Prof. Dr. Andreas Hiltbrunner from the Department of Molecular Plant Physiology at the Institute of Biology II and Dr. Maximilian Ulbrich from the Department of Internal Medicine at the University Medical Center. Philipp Schwenk is a member of the Spemann Graduate School of Biology and Medicine; Andreas Hiltbrunner and Maximilian Ulbrich are members of the Freiburg Cluster of Excellence BIOSS Centre for Biological Signalling Studies.

Original publication:
Enderle, B., Sheerin, D.J., Paik, I., Kathare, P.K., Schwenk, P., Klose, C., Ulbrich, M.H., Huq, E., and Hiltbrunner, A. (2017). PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion. Nature Communications 8: 2221. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29263319

Contact:
Prof. Dr. Andreas Hiltbrunner
Institute of Biology II
University of Freiburg
Tel.: 0761/203-2709
E-Mail: andreas.hiltbrunner@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/how-plants-see-light

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>