Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Plants Measure Temperature

16.11.2016

Research team shows how plants use a light receptor as a thermosensor

Plants respond very sensitive to temperature changes in their environment. At 22 degrees Celsius, for example, the model plant Arabidopsis shows compact growth. But if the temperature rises only a few degrees, plants exhibit an increased elongation growth in the shoot and leaves, enabling plant organs to cool down more easily by evaporation.


The level of active phytochrome B is regulated by light and temperature. Phytochrome B is inactivated more strongly at higher temperatures, promoting elongation growth of plants. Photo: Cornelia Klose

How plants sense temperature was unknown, until now. In two complementary studies published in Science magazine, researchers from the University of Freiburg collaborated with researchers from Cambridge, England; Buenos Aires, Argentina; and St. Louis, Missouri, USA, to demonstrate how the light receptor phytochrome B also works as a temperature sensor in plants.

Phytochromes are photoreceptor proteins that control a number of physiological processes in higher plants, including seed germination, seedling development, induction of flowering and the shade avoidance. The spectral composition of a plant’s light environment changes according to where the plant is growing: The proportion of red light is high in the direct sunlight, while in the shade of vegetation, blue and red light is filtered out, and far red becomes enriched.

Phytochromes can absorb light and act as light driven molecular switches. While the red light portion in sunlight activates phytochromes, far red light inactivates them. Based on this, plants are able to determine the amount of red light in their light environment. Active phytochrome B inhibits elongation growth and promotes compact plant growth instead. It binds to regulatory sequences, or promoters, of certain genes involved for example in the regulation of elongation growth, thus controlling their activity.

It has been known for some time that phytochromes can change from the active to the inactive state, regardless of light conditions. This process is known as dark reversion. The plant physiologists from the University of Freiburg demonstrated previously that the inactivation of phytochrome B via dark reversion can occur in reactions with two different speeds.

A slower dark reversion mechanism ensures that the amount of active phytochrome B gradually declines during the night. A second, about 100 times faster reversion process competes with the light activation of phytochrome B and thus allows the plant to measure the intensity of light during the day. Besides, the researchers discovered that the speed of these two inactivation processes depends strongly on temperature.

Using a special spectroscopy method that allows measuring the amount of active phytochrome B in living seedlings, the scientists demonstrated how much temperature affects the two dark reversion rates. The temperature dependency of the slower dark reversion reaction determines how long phytochrome B remains active during the night and can therefore bind to the gene promoters.

At higher temperatures, phytochrome B is inactivated more rapidly and is released from promoters faster than at lower temperatures. Temperature also influences the activity of phytochrome B during the day. At higher temperatures, the researchers detected reduced levels of the photoreceptors’ active form already in the light phase that was caused by the temperature-dependency of the fast dark reversion mechanism.

Rising temperatures inactivate phytochrome B, particularly in weak light, which in turn promotes elongation growth. Using these mechanisms, plants are able to adapt their development to changes in their environment.

The researchers involved in the studies are Dr. Cornelia Klose, Prof. Dr. Andreas Hiltbrunner, and Prof. Dr. Eberhard Schäfer from the Department of Molecular Plant Physiology of the Institute of Biology II at the University of Freiburg. Hitbrunner and Schäfer are members of the BIOSS Centre for Biological Signalling Studies cluster of excellence, also at the University of Freiburg.
Original publications:
Martina Legris, Cornelia Klose, E. Sethe Burgie, Cecilia Costigliolo, Maximiliano Neme, Andreas Hiltbrunner, Philip A. Wigge, Eberhard Schäfer, Richard D. Vierstra, Jorge J. Casal (2016). Phytochrome B integrates light and temperature signals in Arabidopsis. Science. DOI: 10.1126/science.aaf5656

Jae-Hoon Jung, Mirela Domijan, Cornelia Klose, Surojit Biswas, Daphne Ezer, Mingjun Gao, Asif Khan Khattak, Mathew S. Box, Varodom Charoensawan, Sandra Cortijo, Manoj Kumar, Alastair Grant, James C. W. Locke, Eberhard Schäfer, Katja E. Jaeger, Philip A. Wigge (2016). Phytochromes function as thermosensors in Arabidopsis. Science. DOI: 10.1126/science.aaf6005


Contact:
Dr. Cornelia Klose
Faculty of Biology
University of Freiburg
Phone: +49 (0)761 / 203 - 2627
E-Mail: cornelia.klose@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-11-15.160-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>