Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How NORE1A Acts as a Barrier to Tumor Growth

17.03.2015

Researchers reveal how cells protect themselves from a protein that is a key driver of cancer. The study appears in The Journal of Cell Biology.

Mutations that activate a protein called Ras drive excessive cell proliferation associated with cancer, but their ability to promote tumor growth is limited by the fact that they also induce cells to exit the cell cycle and become dormant, or senescent.


Clark Lab

Activated Ras induces cell senescence (blue) in the presence (left), but not the absence (right), of NORE1A.

How active Ras mutants induce senescence, and how this pathway is disrupted in cancer cells is still unclear.

Geoffrey Clark and colleagues from the University of Louisville examined the role of the tumor suppressor NORE1A, a protein that binds to active Ras. Overexpressing NORE1A induced cell senescence, whereas removing the protein prevented senescence and enhanced the transformation of cells with cancer-promoting Ras mutations.

The researchers found that Ras enhanced NORE1A’s association with a kinase called HIPK2, and that this interaction was required for cell senescence.

NORE1A promoted HIPK2’s association with p53, a tumor suppressor that plays a major role in restricting cancer development. HIPK2 is known to modify p53 in ways that cause either apoptosis, a kind of cell suicide, or senescence. Clark and colleagues found that NORE1A enhanced the senescence pathway.

The findings delineate how NORE1A allows Ras to modulate p53 function and induce cell senescence, and the loss of NORE1A may be a critical step in the growth of tumors.

Donninger, H., et al. 2015. J. Cell Biol. doi:10.1083/jcb.201408087

About The Journal of Cell Biology
The Journal of Cell Biology (JCB) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works, and third parties may reuse the content for non-commercial purposes under a creative commons license.

For more information, please visit www.jcb.org

Research reported in the press release was supported by the National Institutes of Health.

Contact Information
Rita Sullivan King
Communications Manager
news@rupress.org
Phone: 212-327-8603

Rita Sullivan King | newswise

Further reports about: Biology Cell HIPK2 Ras Rockefeller Tumor cell senescence growth of tumors p53 pathway senescence suppressor tumor suppressor

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>