Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How noise changes the way the brain gets information


In mice, prolonged exposure to sound altered cells connected to the brain

Cells that relay information from the ear to the brain can change in significant ways in response to the noise level in the environment.

A synapse formed by the auditory nerve in a normal mouse (blue, left), and in a mouse exposed to noise for a week (blue, right).

Researchers say it's likely that synapses become enlarged in noise-exposed mice to create space for more vesicles -- small round structures that store chemicals used to deliver messages to the brain.

Credit: Amanda M. Lauer, Johns Hopkins University School of Medicine

That's one major finding of a study out today in the Early Edition of the Proceedings of the National Academy of Sciences.

Expose the cells to loud sounds for a prolonged period of time, and they alter their behavior and even their structure in a manner that may aid hearing in the midst of noise. End the ruckus, and the cells change again to accommodate for quieter environs.

"The brain is amazingly adaptable: The way it receives information can change to accommodate for different conditions, and this is what we see in our research," said Matthew Xu-Friedman, PhD, an associate professor of biological sciences at the University at Buffalo. "What we see is that the cells in the auditory nerve adjust. They change themselves so they can respond to a different, heightened level of activity."

The research, conducted on mice, was led by Xu-Friedman and completed by a team at UB and the Johns Hopkins University School of Medicine. The study tested how the animals responded to living in a noisy habitat for a week, and how the noise-exposed animals then reacted to a quiet environment.

Auditory nerve cells as frugal savers

When the ear is exposed to a noise, cells in the auditory nerve release chemicals called neurotransmitters. These chemicals tell the brain that the ear has been stimulated. That's how we hear.

One problem that can complicate this process is depletion of neurotransmitter: Each cell has a limited supply of the chemicals, and when a cell runs out, it loses its ability to contact the brain. This becomes an issue in noisy environments, where constant stimulation puts cells at risk for using up neurotransmitter too fast.

Xu-Friedman believes that the adaptations that mice exhibited in the new study are geared toward addressing this complication.

For a week, the animals were exposed to noise akin to that made by a lawn mower or hair dryer.

In response to this provocation, the animals' auditory nerve cells became more frugal, discharging a smaller proportion of their neurotransmitter reserves in response to stimuli than comparable cells in animals reared in quieter habitats. This meant the noise-exposed mice would be less likely to deplete neurotransmitters while processing background noise, and more likely to have chemicals available for signaling the brain when new sounds appeared.

"The changes could help the animals deal with loud conditions and not go deaf," Xu-Friedman said. "Instead of draining your limited supply, you save some of it so you can continue processing new stimuli."

In addition to altering their behavior, the animals' auditory nerve cells also changed their structure, enlarging their synaptic endings. This is the region of the cells where neurotransmitters are stored, and the increase in size implies that the cells were upping their inventories of the chemicals, Xu-Friedman said.

Reverting to normal behavior

When the researchers placed the noise-exposed mice into a quiet habitat, the animals' auditory nerve cells adapted, once again, to new conditions.

The cells released neurotransmitters at a level akin to mice that had never been in loud environs.

These results demonstrate the brain's adaptability, said Xu-Friedman.

"We think we may have found another form of homeostasis," he said. "If the brain needs to process information under many different conditions, it's helpful if there's a set of rules to follow, ways to behave when activity is high and when activity is low. That appears to be happening with regard to these cells in the auditory nerve."


The study was funded by grants from the National Institutes of Health, National Science Foundation and Dalai Lama Trust Fund.

Xu-Friedman's co-authors on the paper were Tenzin Ngodup and Jack A. Goetz in the Department of Biological Sciences at UB; Brian C. McGuire and Amanda M. Lauer in the Center for Hearing and Balance and Department of Otolaryngology-Head and Neck Surgery at Johns Hopkins University School of Medicine; and Wei Sun in the Center for Hearing and Deafness and Department of Communicative Disorders and Sciences at UB.

Media Contact

Charlotte Hsu


Charlotte Hsu | EurekAlert!

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>